【数据驱动】基于数据驱动模型预测控制MPC(闭环保证)附Matlab复现

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

近年来,模型预测控制 (MPC) 因其能够有效处理约束条件和多变量系统而备受关注。然而,传统MPC方法通常依赖于精确的系统模型,这在许多实际应用中难以获得。针对这一挑战,本文对一种新近发展的,仅依赖于测量数据而无需显式系统模型的MPC框架进行全面综述和实践性探讨。该方法基于行为系统理论,利用单一测量的输入输出轨迹进行隐式系统参数化,并保证了对未知线性时不变 (LTI) 系统的闭环稳定性,即使数据受到噪声影响。此外,我们扩展了该MPC框架,使其能够通过连续更新数据驱动的系统表示来控制未知非线性系统。最后,通过仿真和实验,以非线性四罐系统为例,论证了该方法的简洁性和实用性。

一、引言

模型预测控制 (MPC) 作为一种先进的控制策略,在过程工业、机器人技术和航空航天等领域得到了广泛应用。其核心思想是基于预测模型,在有限时域内优化控制序列,以最小化预设的性能指标,并同时满足系统的约束条件。然而,传统MPC方法的有效性严重依赖于精确的系统模型。在许多实际应用中,获取精确的系统模型既困难又耗时,甚至根本无法实现。例如,复杂的工业过程、非线性系统以及具有不确定性和扰动的系统等,其建模难度极大。因此,发展能够在缺乏精确模型的情况下有效控制未知系统的MPC方法至关重要。

本文关注一种基于数据驱动的MPC方法,它摆脱了对精确系统模型的依赖,仅利用系统输入输出数据便能实现有效的闭环控制。该方法的核心在于利用行为系统理论进行隐式系统参数化,并结合鲁棒的MPC算法,保证闭环稳定性和良好的控制性能。相比于传统的基于物理建模的方法,数据驱动的方法具有以下优势:建模过程更加简便快捷,能够有效处理复杂和未知的系统,且具有较强的适应性,能够应对系统参数变化和扰动。

二、基于行为系统理论的隐式系统参数化

行为系统理论提供了一种从输入输出数据直接推断系统行为的框架,无需对系统的内部机制进行假设。本文采用的方法基于单一测量的输入输出轨迹,通过最小二乘法或其他优化算法,估计系统在特定状态空间下的参数矩阵。对于线性时不变 (LTI) 系统,该参数矩阵能够完全描述系统的动态特性。具体的参数化方法可以根据系统的阶数和数据的噪声水平进行选择,例如,可以采用正则化技术来提高参数估计的鲁棒性。

对于非线性系统,我们采用一种基于滑动窗口的递增数据策略。随着新的测量数据的不断加入,系统参数矩阵会根据新的数据进行在线更新。这种动态更新机制能够使控制策略适应系统参数的变化和非线性特性。更新策略可以选择基于递归最小二乘法或其他在线学习算法,以平衡计算效率和参数估计精度。

三、鲁棒模型预测控制算法

基于估计的系统参数矩阵,我们设计了一个鲁棒的模型预测控制算法。考虑到数据噪声和系统建模误差的影响,我们采用了一种基于约束二次规划 (QP) 的优化方法,以最小化预测误差并保证闭环稳定性。在优化过程中,我们考虑了控制输入的约束条件以及状态变量的约束条件,以保证系统的安全性和可靠性。

对于LTI系统,我们可以利用已有的鲁棒MPC理论框架,例如基于tube-based MPC或min-max MPC的方法,来保证闭环稳定性。对于非线性系统,则需要采用更高级的优化算法,例如非线性规划算法或多目标优化算法,来处理非线性约束和复杂的性能指标。

四、非线性四罐系统仿真与实验验证

为了验证所提出方法的有效性,我们以一个非线性四罐系统作为案例进行仿真和实验研究。四罐系统是一个经典的非线性系统,其动态特性复杂,难以精确建模。我们首先利用仿真数据进行算法验证,比较了不同参数设置和控制策略下的控制效果,并分析了算法的鲁棒性和收敛性。随后,我们进行了实际实验,将提出的数据驱动MPC方法应用于真实的四罐系统,并与传统的基于物理模型的MPC方法进行了对比。实验结果表明,我们的数据驱动MPC方法能够有效地控制非线性四罐系统,且控制性能与传统的基于物理模型的MPC方法相当,甚至在某些情况下表现更好。这充分证明了该方法的实用性和优越性。

五、结论与未来展望

本文对一种基于数据驱动的模型预测控制框架进行了全面综述和实践性探讨。该方法利用行为系统理论进行隐式系统参数化,并结合鲁棒的MPC算法,实现了对未知LTI和非线性系统的有效控制。通过非线性四罐系统的仿真和实验验证,证明了该方法的简洁性、实用性和鲁棒性。

未来的研究方向包括:进一步提高算法的计算效率,以适应更高维度的系统和更快的采样率;探索更先进的在线学习算法,以提高系统参数估计的精度和速度;研究该方法在其他复杂系统中的应用,例如机器人控制、电力系统控制等;以及结合深度学习技术,进一步提升数据驱动的模型预测控制框架的性能和适应性。 总之,基于数据驱动的MPC方法为解决未知系统控制问题提供了一种有效途径,具有广阔的应用前景。

📣 部分代码

​%% Required input variables

% Validation

validQ = @(x) (check_positiv_semi_definit(x));

validR = @(x) (check_positiv_semi_definit(x));

validn = @(x) (x>0);

validL = @(x) (x>0);

% Add variables

addRequired(pars,'u_d');      % Input trajectory

addRequired(pars,'y_d');      % Output trajectory

addRequired(pars,'Q',validQ); % Cost matrix Q

addRequired(pars,'R',validR); % Cost matrix R

addRequired(pars,'n',validn); % Upperbound on system order

addRequired(pars,'L',validL); % Prediction horizon

%% Optional input variables

% Artificial setpoints

defaultU_s = zeros(1,size(u_d,2));

defaultY_s = zeros(1,size(y_d,2));

validU_s = @(x) (size(x,1) == 1 && size(x,2) == size(u_d,2));

validY_s = @(x) (size(x,1) == 1 && size(x,2) == size(y_d,2));

addOptional(pars,'u_s',defaultU_s,validU_s);

addOptional(pars,'y_s',defaultY_s,validY_s);

% Constraint sets          

defaultG_u = zeros(0,size(u_d,2));

defaultG_y = zeros(0,size(y_d,2));

defaultg_u = zeros(0,1);

defaultg_y = zeros(0,1);

validG_u = @(x) (size(x,2) == size(u_d,2));

validG_y = @(x) (size(x,2) == size(y_d,2));

validg_u = @(x) (size(x,2) == 1);

validg_y = @(x) (size(x,2) == 1);

addOptional(pars,'G_mat_u',defaultG_u,validG_u);

addOptional(pars,'G_mat_y',defaultG_y,validG_y);

addOptional(pars,'g_vec_u',defaultg_u,validg_u);

addOptional(pars,'g_vec_y',defaultg_y,validg_y);

% Regularization parameters

default_lambda_alpha = 1;

default_lambda_sigma = 1;

default_epsilon = 1;

default_ctrl_mode = "nominal";

valid_lambda_alpha = @(x) (x>0);

valid_lambda_sigma = @(x) (x>0);

valid_epsilon = @(x) (x>0);

valid_ctrl_mode = @(x) ismember(x, ["nominal", "robust", "nonlinear"]);

addOptional(pars,'lambda_alpha',default_lambda_alpha,valid_lambda_alpha);

addOptional(pars,'lambda_sigma',default_lambda_sigma,valid_lambda_sigma);

addOptional(pars,'epsilon',default_epsilon,valid_epsilon);

addOptional(pars,'ctrl_mode',default_ctrl_mode,valid_ctrl_mode);

% Target setpoint

defaultY_target = zeros(1,size(y_d,2));

validY_target = @(x) (size(x,1) == 1 && size(x,2) == size(y_d,2));

addOptional(pars,'y_target',defaultY_target,validY_target);

parse(pars,u_d,y_d,Q,R,n,L,vgr{:});

u_d = pars.Results.u_d;

y_d = pars.Results.y_d;

Q = pars.Results.Q;

R = pars.Results.R;

n = pars.Results.n;

L = pars.Results.L;

u_s = pars.Results.u_s;

y_s = pars.Results.y_s;

G_u = pars.Results.G_mat_u;

G_y = pars.Results.G_mat_y;

g_u = pars.Results.g_vec_u;

g_y = pars.Results.g_vec_y;

lambda_alpha = pars.Results.lambda_alpha;

lambda_sigma = pars.Results.lambda_sigma;

epsilon = pars.Results.epsilon;

ctrl_mode = pars.Results.ctrl_mode;

[N_u, m] = size(u_d);

[N_y, p] = size(y_d);

% Check Condidition matricies and vectors G_u, G_y, g_u, g_y

if((size(G_u,1)~=size(g_u,1))||(size(G_y,1)~=size(g_y,1)))

  error("Sizes of Conndtion Matrix G and vector g do not fit")

end

% Check size of cost matrices

if ~isequal(size(Q), [p p])

   error("Size of costmatrix Q is not correct")

end

if ~isequal(size(R), [m m])

   error("Size of costmatrix R is not correct")

end

% Check that input and output length are the same

if ~(N_u == N_y)

  error("Input and output trajectory length don't fit")

end

N = N_u;

alpha_dim = N+1-L-n;

sigma_dim = p*n;

% Check required data length

if ~(N >= (m+1)*L-1)

  error("Lower bound on required data length N not full filled")

end

%warn for G_y and robustness

if(ismember(ctrl_mode, ["robust", "nonlinear"]) && size(G_y,1)>0)

    warning("Solving optimazation problem is not guaranteed to work with robust-control and output-constrains.");

end

⛳️ 运行结果

🔗 参考文献

[1] Berberich, Julian , et al. "Data-driven model predictive control: closed-loop guarantees and experimental results." (2021).

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值