基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 比较使用泰勒级数和Koopman算子进行线性化的准确性

2.2 预测控制,使用Koopman算子进行线性化,一个线性模型

2.3 预测控制,使用Koopman算子进行线性化,两个线性模型

2.4 预测控制,使用泰勒级数进行线性化

🎉3 参考文献

🌈4 Matlab代码、数据、文章


💥1 概述

文献来源:

摘要:
最近的研究表明,纳米定位系统(例如压电致动器(PEAs))的非线性动力学可以被循环神经网络(RNNs)准确捕捉。这项技术的一个直接应用是用于精密定位的PEA系统控制:将非线性RNN模型线性化,然后应用模型预测控制(MPC)。然而,由于常用的线性化方法(例如泰勒级数),所得到的线性系统仅在线性化点的小邻域内保证准确,因此控制带宽和控制性能相当有限。为了解决这个问题,我们提出了一种基于Koopman算子的线性化方法,然后使用所得到的线性参数变化模型进行预测控制。这种线性化方案可以显著减少MPC预测范围内的整体逼近误差,从而提高跟踪性能。我们通过两个应用验证了提出的方法——PEA的轨迹跟踪和原子力显微镜纳米压痕过程中聚合物的变形控制。

由于压电致动器(PEAs)的频率和幅度依赖非线性,设计宽带、高精度和计算效率高的实时控制器具有挑战性[1],[2]。虽然迭代学习或重复控制可以实现对PEA的高带宽和高精度控制[3],[4],但它们不是实时控制器,即不能用于跟踪非周期性轨迹。困难在于获得具有小建模不确定性的高带宽模型。线性模型已广泛用于PEA跟踪,如滑模控制[5]、主动干扰抑制控制[6]等。然而,报告的控制带宽较低,通常小于100Hz,尤其在高频区域,精度不尽如人意。由于PEA系统本质上是非线性的,自然而然地使用非线性模型来捕捉系统动态。倒置模型,如Prandtl-Ishlinskii模型[7]、铁磁材料磁滞模型[8],已被用于补偿非线性。然而,建模带宽仍然有限。

最近,神经网络已被提出用于PEA系统动力学建模[9],[10]。其中,循环神经网络(RNN)是一种能够以更高准确性模拟非线性PEA动态的方法[10],基于它的非线性模型预测控制器的控制带宽可以达到数百Hz。然而,这种非线性模型预测控制器在计算上成本高且难以处理,因为必须解决一个非线性优化问题(通常是非凸的)。因此,本文关注改进基于RNN模型的控制器的计算效率。

另一种选择是通过线性化原始非线性系统来避免非线性优化问题。泰勒级数在非线性系统线性化中被广泛使用[13]。然而,缺点是近似精度仅在线性化点的小邻域内得到保证。因此,随着预测范围的增加,建模不确定性将增加,从而限制MPC的性能。反馈线性化和平坦性也可用于线性化,但它们对于一般非线性系统并不有效[14],[15]。其他选项包括Carleman线性化、“polyflow”和Koopman算子方法[16]–[18]。在这些方法中,只有Koopman方法是数据驱动的[19],[20]。

详细文章见第4部分。

📚2 运行结果

2.1 比较使用泰勒级数和Koopman算子进行线性化的准确性

2.2 预测控制,使用Koopman算子进行线性化,一个线性模型

2.3 预测控制,使用Koopman算子进行线性化,两个线性模型

2.4 预测控制,使用泰勒级数进行线性化

部分代码:

%simN=900;
%add a weight matrix We for the tracking error
dwe=1-(1:Nh)/Nh+0.1;
We=diag(dwe.^2);
We=eye(Nh);
for k=1:simN
    %system dynamics
    betak=bxn(1:Nf);
    xk=bxn(Nf+1:Nf+Nrnn);
    etak=bxn(Nf+Nrnn+1:end);
    
%     uk(k)=(y1range(2)-y1range(1))/(x1range(2)-x1range(1))*(uk(k)-x1range(1))+y1range(1);
    tmp=Cbar*betak/scale;
    bxn=[Abar*betak+Bbar*uk(k);
        tanh(W1*xk+B2+B1*tmp);
         Ae*etak+scale*Be*(W2*xk+B3)]+Gall*ek1;    
    yk(k)=Call*bxn+ek1;
    ek1=measn(k)*0;
    
    %state estimation
    %Sigma points
    sqrtPk=chol(Pk,'lower');%cholesky factorization
    xi=[xkhat repmat(xkhat,1,Nall)+gamma*sqrtPk repmat(xkhat,1,Nall)-gamma*sqrtPk];
    %Time update
    uk_1=uk(k);
    betaki=xi(1:Nf,:);
    xki=xi(Nf+1:Nf+Nrnn,:);
    etaki=xi(Nf+Nrnn+1:end,:);
    tmp=Cbar*betaki/scale;
    xikk_1=[Abar*betaki+repmat(Bbar*uk_1,1,2*Nall+1);
            tanh(W1*xki+repmat(B2,1,2*Nall+1)+B1*tmp);
            Ae*etaki+scale*Be*(W2*xki+B3)]+repmat(Gall*ek,1,2*Nall+1);
    xkhat_=sum(xikk_1*WimMat,2);
    Pk_=Rv;
    for k1=1:2*Nall+1
        Pk_=Pk_+WicMat(k1,k1)*( (xikk_1(:,k1)-xkhat_)*(xikk_1(:,k1)-xkhat_)' );
    end
    ykk_1=Call*xikk_1;%row vector
    ykhat_=sum(ykk_1*WimMat);%scalar
    %Measurement update    
    Pykayka=Rn;%yka means yk with ~ above
    for k1=1:2*Nall+1
        Pykayka=Pykayka+WicMat(k1,k1)*( (ykk_1(:,k1)-ykhat_)*(ykk_1(:,k1)-ykhat_)' );
    end
    Pxkyk=zeros(Nall,1);
    for k1=1:2*Nall+1
        Pxkyk=Pxkyk+WicMat(k1,k1)*( (xikk_1(:,k1)-xkhat_)*(ykk_1(:,k1)-ykhat_)' );
    end
    Kk=Pxkyk/Pykayka;%Pxkyk*inv(Pykayka)

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1] Xie, Shengwen, and Juan Ren. "Recurrent-neural-network-based Predictive Control of Piezo Actuators for Trajectory Tracking." IEEE/ASME Transactions on Mechatronics (2019).
[2] Xie, Shengwen, and Juan Ren. "Linearization of Recurrent-neural-network-based models for Predictive Control of Nano-positioning Systems using Data-driven Koopman Operators" IEEE Access (2020). DOI:10.1109/ACCESS.2020.3013935.

🌈4 Matlab代码、数据、文章

  • 27
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
下面是一个基于Koopman算子控制预测MATLAB示例代码: ```matlab % 定义非线性系统的动力学方程 function dxdt = f(x) dxdt = [x(1) + 0.1 * x(1) * x(2); x(2) - 0.1 * x(1) * x(2)]; end % 定义Koopman算子的RBF核参数 rbf_sigma = 0.2; rbf_n_components = 100; % 生成训练数据 train_x = rand(500, 2) * 2 - 1; % 计算Koopman算子的RBF特征 rbf_features = rbf_kernel(train_x, train_x, rbf_sigma); train_features = rbf_kernel(train_x, train_x, rbf_sigma, rbf_features); % 计算Koopman算子的逆矩阵 K_inv = pinv(train_features); % 定义控制变量 u = [0.5; 0.5]; % 定义初始状态 x = [0.1; 0.1]; % 执行控制循环 for i = 1:10 % 计算状态演化 x_feature = rbf_kernel(x, train_x, rbf_sigma, rbf_features); x_koopman = K_inv * x_feature; x = f(x) + u * i - x_koopman'; % 输出当前状态 fprintf('x_%d = %f %f\n', i, x(1), x(2)); end % 执行预测循环 x_predict = [0.1; 0.1]; for i = 1:10 % 计算状态演化 x_feature = rbf_kernel(x_predict, train_x, rbf_sigma, rbf_features); x_koopman = K_inv * x_feature; x_predict = f(x_predict) + u * i - x_koopman'; % 输出预测状态 fprintf('x_predict_%d = %f %f\n', i, x_predict(1), x_predict(2)); end % 定义RBF核函数 function K = rbf_kernel(X1, X2, sigma, K_prev) if nargin < 4 K_prev = []; end if isempty(K_prev) n1 = size(X1, 1); n2 = size(X2, 1); norm1 = sum(X1.^2, 2); norm2 = sum(X2.^2, 2); K = norm1 * ones(1, n2) + ones(n1, 1) * norm2' - 2 * X1 * X2'; K = exp(-K / (2 * sigma^2)); else n1 = size(X1, 1); n2 = size(X2, 1); norm1 = sum(X1.^2, 2); norm2 = sum(X2.^2, 2); K = norm1 * ones(1, n2) + ones(n1, 1) * norm2' - 2 * X1 * X2'; K = exp(-K / (2 * sigma^2)) * K_prev; end end ``` 在这个示例代码中,我们首先定义了一个非线性系统的动力学方程f(x),表示状态向量x的演化。然后定义了Koopman算子的RBF核参数,生成了训练数据train_x,计算了Koopman算子的逆矩阵K_inv。接下来,我们执行了一个控制循环,每次循环中计算状态向量x的演化,并输出当前状态。在控制循环后,我们执行了一个预测循环,每次循环中计算状态向量x_predict的演化,并输出预测状态。在控制预测循环中,我们使用了Koopman算子的逆矩阵K_inv来将状态向量转化为Koopman空间中的向量,然后再进行计算和控制/预测。为了计算Koopman算子的RBF特征,我们还定义了一个RBF核函数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值