✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 本文论述了一种用于生成粘弹性粘塑性损伤材料力学性能数据空间填充程序的设计与实现。该程序基于预定义的本构模型,考虑水分含量、应变率和纳米粒子体积分数等关键参数的影响,通过合理的采样策略,生成覆盖参数空间的全面且高效的数据集。该数据集可用于后续的材料模型参数识别、数值模拟以及人工智能辅助材料设计等方面。文章详细介绍了程序的算法流程、参数设置、数据验证以及潜在应用,并对未来研究方向进行了展望。
关键词: 空间填充设计,本构模型,粘弹性粘塑性损伤,水分依赖性,应变率依赖性,纳米粒子体积分数,数据生成
1. 引言
材料的力学行为往往受到多种因素的复杂影响,例如温度、湿度、应变率以及材料内部微观结构等。对于粘弹性粘塑性损伤材料,其本构关系更是极其复杂,难以通过简单的实验手段全面掌握其在不同参数组合下的力学响应。传统的实验方法费时费力,且难以覆盖整个参数空间。因此,发展高效的数据生成方法至关重要。本文提出了一种基于空间填充设计的程序,用于生成粘弹性粘塑性损伤材料力学性能数据,并考虑了水分含量、应变率和纳米粒子体积分数等关键参数的依赖性。
2. 本构模型与参数设置
本文采用改进的Gurson-Tvergaard-Needleman (GTN) 模型描述粘弹性粘塑性损伤材料的本构行为。该模型考虑了材料的粘弹性特性、塑性变形以及损伤演化。模型中包含多个参数,例如弹性模量 (E)、泊松比 (ν)、屈服强度 (σy)、硬化模量 (H)、损伤参数 (f)、粘性系数 (η) 等。此外,为了体现水分、应变率和纳米粒子体积分数的影响,我们将这些参数作为模型输入,并引入相应的函数关系来修正模型参数。例如,可以采用经验公式或基于物理机制的模型来描述水分含量对屈服强度和硬化模量的影响。应变率效应可以通过引入应变率敏感参数来体现。纳米粒子的加入则可能影响材料的强度、韧性以及损伤演化,可以通过调整GTN模型中的损伤参数来模拟这种影响。
具体而言,我们假设模型参数与影响因素的关系如下:
-
水分含量 (w): σy = σy0 * f1(w), H = H0 * f2(w), 其中σy0和H0为初始屈服强度和硬化模量,f1(w)和f2(w)为水分含量影响函数,例如指数函数或多项式函数。
-
应变率 (ε̇): σy = σy(w) * f3(ε̇), 其中f3(ε̇)为应变率敏感函数,例如幂律函数。
-
纳米粒子体积分数 (φ): f = f(φ), 其中f为损伤参数,其与纳米粒子体积分数的关系可以通过实验数据拟合得到。
参数的取值范围需要根据具体的材料特性进行设定。可以通过文献调研、初步实验或专家经验来确定合理的参数范围。
3. 空间填充设计与数据生成
为了高效地覆盖参数空间,我们采用Latin Hypercube Sampling (LHS) 方法进行空间填充设计。LHS 方法可以确保在每个参数维度上均匀地采样,避免样本聚集在参数空间的某些区域。通过LHS 方法,我们可以在参数空间内生成一系列样本点,每个样本点代表一组不同的参数组合。
对于每个样本点,我们利用预定义的本构模型和参数关系,计算材料在不同应力状态下的应力-应变曲线,以及其他相关的力学性能指标,例如损伤演化曲线、能量耗散等。这些计算结果将构成最终的数据集。
4. 数据验证与分析
生成的数据库需要进行必要的验证。可以通过与实验数据进行比较,评估模型的准确性和可靠性。此外,可以对数据进行统计分析,例如计算相关系数、方差分析等,来研究不同参数之间的相互作用。
5. 潜在应用
生成的数据库可以广泛应用于以下领域:
-
材料模型参数识别: 利用生成的数据库,可以采用反向分析的方法,精确地识别本构模型中的参数。
-
数值模拟: 将生成的数据库用于有限元分析等数值模拟中,可以提高模拟的精度和效率。
-
人工智能辅助材料设计: 可以利用机器学习等人工智能技术,对生成的数据库进行分析,预测材料性能,并指导新材料的设计与开发。
6. 未来研究方向
未来的研究可以集中在以下几个方面:
-
探索更精确和完善的本构模型,以更准确地描述粘弹性粘塑性损伤材料的力学行为。
-
结合实验数据,对模型参数和参数之间的关系进行更精细的校准和优化。
-
开发更高级的空间填充设计方法,例如改进的LHS方法或其他类型的空间填充算法,以提高采样效率。
-
将多物理场耦合效应考虑在内,例如热-力耦合、水-力耦合等,构建更全面的材料模型。
📣 部分代码
% % Output:
% % Z - The output feature maps for a set of images. A (H)x(W)x(C)x(N) array.
%
% % Copyright 2015-2016 The MathWorks, Inc.
%
% Z = tanh(X);
% end
function Z = sigmoidForward(X)
% sigmoidForward Sigmoid activation
%
% Input:
% X - The input feature maps for a set of images. A (H)x(W)x(C)x(N) array.
%
% Output:
% Z - The output feature maps for a set of images. A (H)x(W)x(C)x(N) array.
% Copyright 2015-2016 The MathWorks, Inc.
Z = 1 ./ (1 + exp(-X));
end
function [zInd, iInd, fInd, oInd] = gateIndices(HiddenSize)
% gateIndices Determine indices of the data input, input, forget and
% output gates of the LSTM layer
% Copyright 2017 The MathWorks, Inc.
iInd = 1:HiddenSize;
fInd = 1 + HiddenSize:2*HiddenSize;
zInd = 1 + 2*HiddenSize:3*HiddenSize;
oInd = 1 + 3*HiddenSize:4*HiddenSize;
end
⛳️ 运行结果
🔗 参考文献
[1] 许大好,李询,谢倩.用Matlab控制NI数据采集卡实现实时数据采集[J].常州工学院学报, 2006, 19(5):4.DOI:10.3969/j.issn.1671-0436.2006.05.008.
[2] 高炜,张江滨.基于Simulink与硬件的实时数据采集系统的实现[J].电网与清洁能源, 2012, 28(3):4.DOI:10.3969/j.issn.1674-3814.2012.03.008.
[3] 王学真.热塑性树脂材料本构模型建立及基于ABAQUS子程序开发[D].哈尔滨工业大学[2025-01-19].DOI:CNKI:CDMD:2.1013.036581.
[4] 刘军忠,许金余,吕晓聪,等.围压下岩石的冲击力学行为及动态统计损伤本构模型研究[J].工程力学, 2012, 29(1):55-63.
[5] 郑永来,夏颂佑.岩石粘弹性连续损伤本构模型[C]//第五届全国岩石动力学学术会议.1996.
[6] 王东红,谢星,赵法锁,等.考虑蠕变损伤的Q_2黄土流变本构模型[J].西安科技大学学报, 2010, 30(6):6.DOI:10.3969/j.issn.1672-9315.2010.06.010.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇