【无人机三维路径规划】基于混合蝴蝶粒子群算法 粒子群算法 蝴蝶算法实现无人机复杂山地环境下航迹规划附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

无人机(Unmanned Aerial Vehicle, UAV)在复杂山地环境下的路径规划是当前研究的热点与难点。传统的路径规划算法在面对复杂地形、多重约束和动态环境时往往表现出局部最优、收敛速度慢等问题。本文提出一种基于混合蝴蝶粒子群(Hybrid Butterfly Particle Swarm Optimization, HBPSO)算法的无人机三维路径规划方法,该方法融合了蝴蝶优化算法(Butterfly Optimization Algorithm, BOA)的全局搜索能力和粒子群优化算法(Particle Swarm Optimization, PSO)的快速收敛特性。首先,利用三维数字高程模型(Digital Elevation Model, DEM)建立复杂山地环境模型,并设置无人机航迹规划的约束条件,包括飞行高度限制、最大转弯角度和避障要求等。然后,将BOA引入PSO算法,利用BOA的强大全局搜索能力寻找更优的初始解,并利用PSO的快速收敛特性加速收敛过程。最后,通过仿真实验验证了本文所提出算法的有效性和优越性。实验结果表明,HBPSO算法在复杂山地环境下能够有效地找到安全、平滑且满足约束条件的三维路径,并具有较快的收敛速度和较高的鲁棒性。

关键词: 无人机;三维路径规划;复杂山地;蝴蝶优化算法;粒子群优化算法;混合算法

1 引言

随着无人机技术的快速发展,无人机在军事侦察、灾害救援、物流运输、地理测绘等领域的应用日益广泛。然而,无人机在复杂山地环境下的自主飞行仍然面临诸多挑战。复杂山地环境的特点是地形起伏剧烈、障碍物分布不规则,这给无人机的路径规划带来了困难。安全、高效地规划出满足约束条件的飞行路径是无人机成功执行任务的关键。

传统的路径规划算法主要包括基于图搜索的算法(如A*算法、Dijkstra算法)和基于采样的算法(如RRT算法)。然而,这些算法在复杂环境下往往存在搜索效率低、容易陷入局部最优、难以满足多约束条件等问题。近年来,基于智能优化的算法,如遗传算法(Genetic Algorithm, GA)、粒子群优化算法(Particle Swarm Optimization, PSO)、蚁群算法(Ant Colony Optimization, ACO)等,因其强大的全局搜索能力和自适应性,在路径规划领域得到了广泛应用。

粒子群优化算法是一种群体智能算法,具有实现简单、收敛速度快的优点,但其容易陷入局部最优,尤其是在面对复杂多模态问题时。而蝴蝶优化算法是一种新兴的群体智能算法,具有强大的全局搜索能力,但在收敛速度方面略逊于PSO。为了结合两者的优点,克服各自的缺点,本文提出了一种混合蝴蝶粒子群算法(HBPSO),并将其应用于无人机在复杂山地环境下的三维路径规划问题。

2 相关研究

近年来,国内外学者在无人机路径规划领域做了大量的研究工作。其中,基于智能优化算法的研究成果较为丰富。

例如,基于遗传算法的路径规划方法能够有效地解决静态环境下的路径规划问题,但在动态环境下,算法的收敛速度和适应性方面仍然有待提高。粒子群优化算法因其简单高效的特性,在路径规划领域得到了广泛的应用,但其容易陷入局部最优,尤其是在面对复杂环境时。蚁群算法能够找到较优的路径,但收敛速度相对较慢,且参数设置较为敏感。

为了克服单一智能优化算法的缺陷,研究者们提出了多种混合算法。例如,将遗传算法和粒子群优化算法相结合,利用遗传算法的全局搜索能力和粒子群算法的局部搜索能力,提高了算法的整体性能。将模拟退火算法与粒子群优化算法结合,利用模拟退火算法的概率接受劣解能力,跳出局部最优。

本文提出的HBPSO算法,充分利用了BOA的全局搜索能力和PSO的快速收敛特性,有望在复杂山地环境下实现更加高效可靠的无人机路径规划。

3 问题描述与建模

3.1 复杂山地环境建模

本文采用三维数字高程模型(Digital Elevation Model, DEM)来描述复杂山地环境。DEM是一种以栅格形式存储的地形高程数据,能够准确地反映地貌的起伏变化。在本文中,我们将DEM数据离散化为三维网格,每个网格点代表一个空间位置,其高度值对应DEM数据。

3.2 路径规划约束条件

为了保证无人机飞行的安全和可行性,需要考虑以下约束条件:

  • 飞行高度限制: 无人机的飞行高度需要高于地面高度,同时受到最大飞行高度的限制。

  • 最大转弯角度: 为了保证飞行平稳,相邻航迹点的转弯角度需要小于最大转弯角度。

  • 避障要求: 航迹需要避开障碍物(如山峰、树木等),保证飞行安全。

  • 起点和终点: 航迹必须从指定的起点出发,到达指定的终点。

3.3 路径表示

本文采用离散点的方式来表示无人机的飞行路径。假设路径由n个航迹点组成,则路径可以表示为:

P = { (x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn) }

其中,(xi, yi, zi) 表示第i个航迹点的三维坐标。

3.4 适应度函数

适应度函数用于评估路径的优劣,其目标是使路径长度最短、飞行平稳、避开障碍物、满足约束条件。本文采用以下适应度函数:

fitness(P) = w1 * path_length(P) + w2 * smoothness(P) + w3 * penalty(P)

其中,

  • path_length(P) 表示路径长度,采用欧氏距离计算。

  • smoothness(P) 表示路径的平滑程度,用相邻航迹点之间转弯角度的平方和来表示。

  • penalty(P) 表示对不满足约束条件的惩罚项,包括高度限制、避障要求等。

  • w1w2w3 为权重系数,用于调整各项指标的相对重要性。

4 混合蝴蝶粒子群算法(HBPSO)

HBPSO算法的核心思想是将蝴蝶优化算法的全局搜索能力和粒子群优化算法的快速收敛特性相结合。具体步骤如下:

  1. 初始化: 随机生成一组粒子,每个粒子表示一条可能的飞行路径。粒子的位置和速度进行随机初始化。

  2. BOA全局搜索: 使用BOA算法对粒子种群进行全局搜索,利用蝴蝶的感知能力来寻找更优的区域。BOA的主要操作包括:

    • 计算蝴蝶的香味: 根据粒子的适应度计算蝴蝶的香味强度。

    • 位置更新: 蝴蝶根据自身位置、最优位置和全局最优位置来更新位置,实现全局搜索。

  3. PSO局部搜索: 将BOA优化后的粒子种群作为PSO算法的初始种群,利用PSO算法的快速收敛特性来寻找局部最优解。PSO算法的主要操作包括:

    • 更新粒子速度: 粒子速度根据自身历史最优位置和全局最优位置进行更新。

    • 更新粒子位置: 粒子位置根据自身速度进行更新。

  4. 适应度评估: 计算每个粒子的适应度值,评估路径的优劣。

  5. 更新最优解: 如果当前粒子找到更优的路径,则更新个体最优位置和全局最优位置。

  6. 迭代终止: 判断是否满足终止条件(如达到最大迭代次数),若满足则停止迭代,否则返回步骤2。

5 仿真实验与结果分析

5.1 实验设置

  • 实验环境: 仿真实验在Matlab环境下进行,采用三维数字高程模型(DEM)模拟复杂山地环境。

  • 无人机参数: 设定无人机的飞行高度限制、最大转弯角度等约束条件。

  • 算法参数: 设置HBPSO算法中BOA和PSO算法的参数,包括种群大小、迭代次数、权重系数等。

  • 评价指标: 采用路径长度、平滑度、适应度值、收敛速度等指标来评估算法的性能。

5.2 实验结果

实验结果表明,HBPSO算法在复杂山地环境下能够找到安全、平滑且满足约束条件的三维路径。与传统的PSO算法和BOA算法相比,HBPSO算法具有以下优势:

  • 全局最优性: HBPSO算法通过BOA的全局搜索能力,避免了陷入局部最优,能够找到更优的解。

  • 收敛速度: HBPSO算法利用PSO算法的快速收敛特性,加快了算法的收敛速度。

  • 鲁棒性: HBPSO算法的参数设置相对稳定,能够适应不同的环境和约束条件,具有较好的鲁棒性。

  • 路径质量: HBPSO算法找到的路径长度较短、平滑度较高,能够满足无人机飞行的实际需求。

5.3 结果分析

实验结果表明,混合算法能够有效地结合不同算法的优点,从而提高算法的性能。HBPSO算法在复杂山地环境下的路径规划问题上取得了良好的效果。该算法的成功在于它能够利用BOA的全局搜索能力来找到较好的初始解,并利用PSO的局部搜索能力来快速收敛到最优解。

6 结论与展望

本文提出了一种基于混合蝴蝶粒子群算法的无人机复杂山地环境下的三维路径规划方法。该方法通过融合BOA的全局搜索能力和PSO的快速收敛特性,有效地克服了传统路径规划算法的不足,实现了安全、高效的无人机航迹规划。仿真实验结果表明,HBPSO算法在复杂山地环境下具有良好的性能,能够找到更优的飞行路径。

⛳️ 运行结果

🔗 参考文献

[1] 吴申尧.植被密集区无人机载LiDAR航线优化方法研究[D].重庆交通大学,2023.

[2] 袁超,胡继勋,罗鼎,等.复杂山地环境下微型无人机安全起降研究及应用[J].地理空间信息, 2016, 14(3):3.DOI:10.3969/j.issn.1672-4623.2016.03.003.

[3] 张艺巍,谭建豪,王耀南.3维复杂山地环境下旋翼无人飞行器高时效航迹规划策略[J].机器人, 2016, 38(6):11.DOI:10.13973/j.cnki.robot.2016.0727.

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值