【通信】具有电磁干扰的RIS辅助无小区大规模MIMO系统的上行链路性能附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着5G网络逐渐普及,社会对移动通信的需求日益增长,用户数量和数据传输速率的期望值也在不断攀升。为了满足未来网络的需求,学界和业界一直在积极探索新型无线通信技术。无小区大规模多输入多输出(Cell-free Massive MIMO,简称无小区大规模MIMO)技术,被广泛认为是极具潜力的方案,有望在超越5G的网络中发挥关键作用。该技术的核心思想是,通过部署大量分布式接入点(Access Points,简称AP),让它们与网络中的所有用户进行通信,并可能采用联合相干信号处理技术。本文旨在对这项技术进行全面的分析,重点探讨不同程度的AP合作对系统性能的影响。

本文深入研究了四种不同的无小区大规模MIMO实现方式在上行链路中的频谱效率(Spectral Efficiency,简称SE)。在分析过程中,我们考虑了空间相关的衰落信道以及任意线性处理方案,力求得到更贴近真实应用场景的结论。研究结果表明,相较于传统的蜂窝大规模MIMO和小型小区网络,无小区大规模MIMO在特定条件下能够显著提升系统性能。然而,实现这一优越性的关键在于采用全局或局部最小均方误差(Minimum Mean-Square Error,简称MMSE)合并技术。这一发现与现有文献中普遍推崇的最大比合并(Maximum-Ratio Combining,简称MRC)方法形成了鲜明对比,为未来的研究方向提供了新的思路。

进一步的研究表明,采用最优MMSE处理的集中式实现方案不仅能最大化频谱效率,还能大幅降低前端链路的信令开销。这与传统的分布式实现方案形成了鲜明的对比,后者通常需要大量的信令交互才能实现AP之间的协调和信息共享。因此,集中式实现方案更有可能成为无小区大规模MIMO网络的首选运营模式,因为它在性能和成本之间实现了更好的平衡。此外,本文还研究了非线性解码技术,结果表明其对频谱效率的提升微乎其微,这暗示了线性解码方案在无小区大规模MIMO网络中的实用性。

本文的贡献在于:

  • 全面分析了不同合作程度的无小区大规模MIMO架构: 通过对四种不同的实现方式进行深入比较,本文为网络设计者提供了关于不同AP合作策略的性能指标,帮助他们更好地权衡性能和复杂性。

  • 强调了MMSE合并技术的重要性: 论文的结论有力地证明了MMSE合并技术在无小区大规模MIMO系统中的优势,纠正了以往文献中对MRC技术的过度推崇,并为未来的研究方向提供了新的视角。

  • 提出了集中式实现方案的优势: 通过分析集中式和分布式实现方案的性能和信令开销,本文强调了集中式方案在频谱效率和前端链路负担方面的优势,并为其作为首选运营模式提供了理论依据。

  • 验证了线性解码方案的实用性: 非线性解码技术带来的提升有限,表明线性解码方案在性能和复杂性之间取得了良好的平衡,更适用于实际的工程实现。

在分析过程中,我们采用了严谨的数学建模和仿真验证方法。首先,我们构建了一个包含多个AP和用户的系统模型,并考虑了空间相关的衰落信道。其次,我们推导了不同合并技术的频谱效率公式,并利用仿真实验验证了理论结果的准确性。最后,我们对不同实现方案的信令开销进行了估算,并分析了其对系统性能的影响。

尽管本文对无小区大规模MIMO技术进行了全面的分析,但仍存在一些值得进一步研究的问题。例如,本文主要关注了线性处理方案,未来可以进一步研究非线性处理方案在无小区大规模MIMO中的应用。此外,本文假设AP之间能够实现完美的时钟同步和频率同步,但在实际应用中,这些同步误差可能会对系统性能产生影响。因此,未来的研究可以考虑这些同步误差对无小区大规模MIMO性能的影响,并提出相应的解决方案。

总而言之,本文对无小区大规模MIMO技术进行了深入而全面的分析,强调了MMSE合并技术和集中式实现方案的重要性,并为未来的研究方向提供了新的思路。无小区大规模MIMO技术有望在超越5G的网络中发挥关键作用,满足日益增长的用户数量和数据传输速率的需求。通过进一步的研究和开发,我们相信无小区大规模MIMO技术将为未来的无线通信带来革命性的变革。

⛳️ 运行结果

🔗 参考文献

[1] Bjrnson E , Sanguinetti L .Making Cell-Free Massive MIMO Competitive With MMSE Processing and Centralized Implementation[J].IEEE Transactions on Wireless Communications, 2020, 19(1):77-90.DOI:10.1109/TWC.2019.2941478.

📣 部分代码

function [SE_MMSE] = functionComputeSE_AP_MMSE_Combining_UL(Hhat,H,C,tau_c,tau_p,nbrOfRealizations,N,K,M,p)%Compute uplink SE for Cell-free mMIMO for the four different receiver%cooperation levels, using either MR or MMSE/L-MMSE combining%%This function was developed as a part of the paper:%%Emil Bjornson, Luca Sanguinetti, "%IEEE Transactions on Wireless Communications, To appear.%%Download article: https://arxiv.org/abs/1903.10611Dp12 = diag(sqrt(p));%Prepare to save simulation resultssignal_MMSE = zeros(M,K);scaling_MMSE = zeros(M,K);G_MMSE = zeros(M,M,K);A = zeros(M,M,K);%% Go through all channel realizationsfor n = 1:nbrOfRealizations                %-----------------Levels 1-3    gp_MMSE = zeros(M,K,K);            %Go through all APs    for m = 1:M                %Extract channel realizations from all UEs to AP l        Hallj = reshape(H(1+(m-1)*N:m*N,n,:),[N K]);                %Extract channel estimate realizations from all UEs to AP l        Hhatallj = reshape(Hhat(1+(m-1)*N:m*N,n,:),[N K]);                        %Compute MR combining        V_MMSE = ((Hhatallj*Dp*Hhatallj')+C_tot(:,:,m)+eyeN)\(Hhatallj*Dp);                %Go through all UEs        for k = 1:K                                                           %%MMSE combining            v = V_MMSE(:,k); %Extract combining vector                                    %Level 2 and Level 3            signal_MMSE(m,k) = signal_MMSE(m,k) + (v'*Hallj(:,k))/nbrOfRealizations;            gp_MMSE(m,:,k) = gp_MMSE(m,:,k) + (v'*Hallj)*Dp12;            scaling_MMSE(m,k) = scaling_MMSE(m,k) + norm(v).^2/nbrOfRealizations;                                              end            end        %Compute averaging of terms for Level 2 and Level 3    for k = 1:K                G_MMSE(:,:,k) = G_MMSE(:,:,k) + gp_MMSE(:,:,k)*gp_MMSE(:,:,k)'/nbrOfRealizations;            end    end%Compute SE for Level 2 and Level 3for k = 1:K        %With L-MMSE combining    b = signal_MMSE(:,k);    A(:,:,k) = G_MMSE(:,:,k) + diag(scaling_MMSE(:,k)) - p(k)*(b*b');    SE_MMSE(k) = prelogFactor*real(log2(1+p(k)*b'*(A(:,:,k)\b)));      end
🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值