✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
能源危机和环境污染日益严峻,推动着以分布式电源(Distributed Generation, DG)为核心的微网技术蓬勃发展。微网作为一种可控的能源单元,能够有效整合可再生能源、提高能源利用效率,并降低对大型电网的依赖。然而,微网内多种能源的互补协同运行面临着诸多挑战,如可再生能源出力的不确定性、负荷需求的动态变化以及多种能源设备的运行特性差异等。因此,如何实现微网的经济、可靠运行成为了当前研究的热点。本文将探讨基于多时间尺度滚动优化的多能源微网双层调度策略,旨在解决微网运行过程中存在的上述挑战,并提升其综合性能。
一、多能源微网调度面临的挑战与机遇
多能源微网通常包含光伏、风力发电、燃气轮机、储能系统以及多种类型的负荷。这些元素的复杂交互使得微网调度面临以下挑战:
- 可再生能源出力的不确定性:
光伏和风力发电的出力受天气条件影响显著,具有间歇性和波动性,难以精确预测,给微网的稳定运行带来了不确定性。
- 负荷需求的动态变化:
用户负荷的需求随着时间、季节和天气等因素变化,呈现出显著的动态特性。准确预测负荷需求对于制定合理的调度计划至关重要。
- 多种能源设备运行特性差异:
不同类型能源设备的运行成本、响应速度和限制条件存在差异,需要进行合理的协调控制,才能实现全局优化。
- 信息交互与安全性:
微网调度需要收集和处理大量的实时数据,涉及到信息交互的安全性和可靠性,需要建立完善的网络安全防护体系。
然而,多能源微网也蕴藏着巨大的机遇:
- 可再生能源消纳能力提升:
微网能够就地消纳可再生能源,减少电网传输损耗,并促进可再生能源的广泛应用。
- 能源利用效率提高:
通过多种能源的互补协同运行,可以有效提高能源利用效率,降低能源消耗。
- 供电可靠性增强:
微网可以独立运行,在电网故障时提供电力支持,增强供电的可靠性。
- 降低运行成本:
通过优化调度,可以降低微网的运行成本,并提供更加经济的能源服务。
二、多时间尺度滚动优化调度策略
为了应对上述挑战,本文提出一种基于多时间尺度滚动优化的调度策略。该策略将调度过程分解为不同时间尺度的多个层级,并采用滚动优化的方法,实现对微网运行的动态调整和优化。
- 长期调度(日/周级别):
基于中长期负荷预测和可再生能源出力预测,制定日/周级别的长期调度计划。该计划主要确定各能源设备的运行状态和功率范围,为短期调度提供约束条件。长期调度重点关注能源储备和设备的检修维护,以保证微网的长期稳定运行。
- 中期调度(小时级别):
基于短期负荷预测和可再生能源出力预测,制定小时级别的中期调度计划。该计划主要确定各能源设备的功率输出曲线,并考虑储能系统的充放电策略。中期调度重点关注经济效益和能源利用效率,通过优化调度降低运行成本。
- 短期调度(分钟/秒级别):
基于实时负荷数据和可再生能源出力数据,进行分钟/秒级别的短期调度。该计划主要负责对各能源设备的功率输出进行精细调整,并实时控制储能系统的充放电,以应对负荷需求和可再生能源出力的波动。短期调度重点关注系统稳定性和电能质量,通过快速响应保障微网的安全可靠运行。
滚动优化的方法是指在每个调度周期内,基于最新的预测数据和运行状态,重新计算并更新调度计划。通过滚动优化,可以有效降低预测误差的影响,并提高调度的鲁棒性和适应性。
三、双层调度框架
为了进一步提高微网调度的效率和灵活性,本文采用双层调度框架。该框架将调度问题分解为上层优化和下层控制两个层次。
- 上层优化:
主要负责制定调度计划,目标是实现微网运行的经济性和可靠性。上层优化采用数学优化方法,如线性规划、混合整数规划或非线性规划,对各能源设备的运行状态和功率输出进行优化。
- 下层控制:
主要负责执行上层优化制定的调度计划,并进行实时调整和控制。下层控制采用控制理论方法,如PID控制、模型预测控制或模糊控制,对各能源设备的功率输出进行精确控制,并维护系统的稳定运行。
双层调度框架能够有效分离调度决策和实时控制,提高调度的效率和灵活性。上层优化关注全局优化,下层控制关注局部稳定,二者协同作用,实现微网的整体优化运行。
四、优化模型与求解方法
上层优化模型的构建需要综合考虑以下因素:
- 目标函数:
可以选择多种目标函数,如最小化运行成本、最大化可再生能源消纳量、提高供电可靠性等。
- 约束条件:
包括能源设备的运行限制(如功率上下限、爬坡速率限制)、电网的电压和电流限制、储能系统的容量限制等。
- 决策变量:
包括各能源设备的功率输出、储能系统的充放电功率、以及设备的启停状态等。
下层控制器的设计需要根据能源设备的特性和控制目标进行选择。常用的控制器包括PID控制器、模型预测控制器和模糊控制器等。
优化模型的求解可以采用多种数学优化方法,如线性规划、混合整数规划、非线性规划以及智能优化算法(如遗传算法、粒子群算法等)。针对不同的问题,需要选择合适的求解方法,以保证求解的效率和精度。
五、案例分析与仿真验证
为了验证本文提出的多时间尺度滚动优化双层调度策略的有效性,可以构建一个包含光伏、风力发电、燃气轮机、储能系统和多种类型负荷的微网模型,并进行仿真分析。
仿真结果可以从以下几个方面进行评估:
- 经济性:
比较采用不同调度策略的运行成本,分析本文提出的调度策略的经济效益。
- 可靠性:
评估采用不同调度策略的供电可靠性,分析本文提出的调度策略对提高供电可靠性的作用。
- 可再生能源消纳:
分析采用不同调度策略的可再生能源消纳量,评估本文提出的调度策略对促进可再生能源应用的作用。
- 系统稳定性:
评估采用不同调度策略的系统稳定性,分析本文提出的调度策略对维护系统稳定性的作用。
通过案例分析和仿真验证,可以证明本文提出的多时间尺度滚动优化双层调度策略能够有效提高微网运行的经济性、可靠性、可再生能源消纳能力和系统稳定性。
六、结论与展望
本文探讨了基于多时间尺度滚动优化的多能源微网双层调度策略,旨在解决微网运行过程中存在的挑战,并提升其综合性能。该策略将调度过程分解为不同时间尺度的多个层级,并采用滚动优化的方法,实现对微网运行的动态调整和优化。双层调度框架能够有效分离调度决策和实时控制,提高调度的效率和灵活性。
未来的研究方向可以包括:
- 考虑需求侧响应的调度策略:
将需求侧响应纳入调度模型,通过激励用户改变用电行为,进一步提高能源利用效率和系统稳定性。
- 考虑不确定性的鲁棒优化:
采用鲁棒优化方法,提高调度计划对不确定性的适应能力,保证微网的安全可靠运行。
- 基于人工智能的调度方法:
采用人工智能技术,如机器学习和深度学习,提高预测精度和调度效率。
- 多微网协同调度:
研究多微网之间的协同调度,实现更大范围的能源优化和资源共享。
⛳️ 运行结果
🔗 参考文献
[1] 黄弦超、封钰、丁肇豪.多微网多时间尺度交易机制设计和交易策略优化[J].电力系统自动化, 2020, 44(24):12.DOI:10.7500/AEPS20200601001.
[2] 聂彩静.基于博弈论的新能源系统多尺度协同调度策略研究[D].中原工学院,2023.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇