✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
支持向量机 (Support Vector Machine, SVM) 是一种强大的机器学习算法,最初被设计用于解决分类问题,但通过引入适当的修改,例如使用支持向量回归 (Support Vector Regression, SVR),SVM 同样可以有效应用于回归预测领域。特别是在多输入单输出的回归问题中,SVM 凭借其在高维空间中的优秀泛化能力和对非线性关系的建模优势,展现出了显著的优越性。本文将深入探讨 SVM 在多输入单输出回归预测中的原理、应用以及优势,并分析其存在的局限性。
一、支持向量回归的基本原理
与传统的回归方法试图最小化所有数据点的预测误差不同,SVR 的目标是寻找一个最优的超平面,使得训练数据集中尽可能多的样本点落在以该超平面为中心的宽度为 ε 的管道内,即所谓的 ε-不敏感损失函数。简单来说,SVR 允许一定范围内的误差存在,只对超出该范围的误差进行惩罚。
具体而言,对于一个包含 N 个样本的数据集 {x<sub>i</sub>, y<sub>i</sub>}<sup>N</sup><sub>i=1</sub>,其中 x<sub>i</sub> ∈ R<sup>n</sup> 是 n 维输入向量,y<sub>i</sub> ∈ R 是对应的输出值,SVR 的目标是找到一个函数 f(x),使得:
f(x) = w<sup>T</sup>Φ(x) + b
其中,w 是权重向量,Φ(x) 是将输入向量 x 映射到高维特征空间的函数,b 是偏置项。
SVR 的优化目标可以表示为:
min 1/2 ||w||<sup>2</sup> + C Σ<sup>N</sup><sub>i=1</sub> (ξ<sub>i</sub> + ξ<sup>*</sup><sub>i</sub>)
subject to:
y<sub>i</sub> - w<sup>T</sup>Φ(x<sub>i</sub>) - b ≤ ε + ξ<sub>i</sub>
w<sup>T</sup>Φ(x<sub>i</sub>) + b - y<sub>i</sub> ≤ ε + ξ<sup></sup><sub>i</sub>
ξ<sub>i</sub>, ξ<sup></sup><sub>i</sub> ≥ 0, i = 1, ..., N
其中,C 是惩罚系数,用于控制模型对超出 ε 范围的误差的容忍程度;ξ<sub>i</sub> 和 ξ<sup>*</sup><sub>i</sub> 是松弛变量,用于处理不可避免的噪声和异常值,允许一些样本点落在 ε 管道之外,但会受到相应的惩罚。
通过引入拉格朗日乘子并求解对偶问题,可以将 SVR 的预测函数表达为:
f(x) = Σ<sup>N</sup><sub>i=1</sub> (α<sub>i</sub> - α<sup>*</sup><sub>i</sub>)K(x<sub>i</sub>, x) + b
其中,α<sub>i</sub> 和 α<sup>*</sup><sub>i</sub> 是拉格朗日乘子,K(x<sub>i</sub>, x) = Φ(x<sub>i</sub>)<sup>T</sup>Φ(x) 是核函数,用于隐式地计算高维特征空间中的内积,而无需显式地计算 Φ(x)。常用的核函数包括线性核、多项式核、径向基函数 (Radial Basis Function, RBF) 核等。
二、SVM 在多输入单输出回归预测中的优势
-
高维空间映射,处理非线性关系: 核函数的引入使得 SVM 能够有效地处理非线性回归问题。通过将输入数据映射到高维特征空间,原本在低维空间中线性不可分的数据变得线性可分,从而能够使用线性模型进行回归预测。常用的 RBF 核函数能够将数据映射到无限维空间,理论上能够拟合任意复杂的非线性关系。
-
良好的泛化能力: SVM 基于结构风险最小化原则,旨在找到一个能够在训练数据上表现良好,并且在未知数据上也能保持良好性能的模型。通过最大化间隔,SVM 能够降低模型的复杂度,避免过拟合,从而提高模型的泛化能力。
-
对异常值和噪声的鲁棒性: ε-不敏感损失函数的引入使得 SVM 对异常值和噪声具有一定的鲁棒性。只有超出 ε 范围的误差才会受到惩罚,因此 SVM 不会过度关注个别异常值,从而能够得到更加稳健的模型。
-
全局最优解: SVM 的优化问题是一个凸二次规划问题,因此能够保证找到全局最优解。这避免了像神经网络等算法可能陷入局部最优解的问题。
-
稀疏性: SVR 的解具有稀疏性,只有少量的样本点 (即支持向量) 对最终的模型产生影响。这不仅降低了模型的计算复杂度,也使得模型更易于解释。
三、SVM 在多输入单输出回归预测中的应用举例
SVM 在多输入单输出回归预测中有着广泛的应用,例如:
-
时间序列预测: 利用历史数据预测未来的股票价格、电力负荷、天气变化等。输入可以是过去一段时间内的价格、负荷、温度等,输出是未来的价格、负荷、温度等。
-
工程领域: 预测桥梁的承载能力、钢结构的应力应变、混凝土的强度等。输入可以是桥梁的几何参数、钢结构的尺寸、混凝土的成分等,输出是相应的承载能力、应力应变、强度等。
-
金融领域: 预测贷款违约率、信用评分等。输入可以是借款人的年龄、收入、职业、信用记录等,输出是相应的违约率、信用评分等。
-
医疗领域: 预测患者的疾病风险、治疗效果等。输入可以是患者的年龄、性别、病史、体检指标等,输出是相应的疾病风险、治疗效果等。
-
环境科学: 预测空气质量、水质变化等。输入可以是历史的污染物浓度、气象条件、水文条件等,输出是相应的空气质量、水质变化等。
四、SVM 的局限性及改进方向
尽管 SVM 在多输入单输出回归预测中具有诸多优势,但同时也存在一些局限性:
-
参数选择困难: SVM 的性能受到核函数类型、核函数参数 (例如 RBF 核的 γ 参数)、惩罚系数 C 和 ε 参数的影响。选择合适的参数需要进行大量的实验和调优。
-
计算复杂度较高: 当训练样本数量较大时,SVM 的训练时间会显著增加,因为需要求解一个复杂的二次规划问题。
-
可解释性较差: 对于非线性核函数,SVM 的模型往往难以解释,难以理解输入变量对输出的影响。
⛳️ 运行结果
🔗 参考文献
[1]杨金芳.支持向量回归在预测控制中的应用研究[D].华北电力大学(河北),2007.DOI:10.7666/d.y1151396.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇