✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着经济的快速发展和社会的不断进步,电力作为现代社会运行的基石,其安全稳定运行至关重要。电力塔作为电力输送系统的重要组成部分,承担着输送电能的重任。然而,电力塔长期暴露于野外环境中,易受到自然因素(如恶劣天气、植被生长、动物破坏等)和人为因素(如偷盗、破坏等)的影响,导致设备老化、线路断裂等安全隐患。传统的电力塔巡检方式主要依靠人工巡检,其存在着效率低下、成本高昂、安全风险大等诸多问题。
近年来,无人机技术凭借其灵活性高、机动性强、智能化程度高等优点,在电力巡检领域展现出巨大的应用潜力。利用无人机进行电力塔巡检,可以显著提高巡检效率,降低人工成本,规避安全风险,实现对电力设备的快速、全面、精准的检测。然而,如何规划出一条高效、安全的三维巡检路径,是无人机电力巡检技术应用的关键挑战。传统的路径规划算法,如A*算法、Dijkstra算法等,在面对复杂的电力塔三维空间环境时,往往存在计算量大、易陷入局部最优等问题。
因此,本文将重点探讨基于蚁群算法(Ant Colony Optimization,ACO)的无人机电力塔巡检三维路径规划方法。蚁群算法是一种模拟蚂蚁觅食行为的启发式算法,具有全局搜索能力强、鲁棒性高等优点,非常适合解决复杂的优化问题。通过将电力塔巡检的三维空间抽象为图论模型,并引入蚁群算法的机制,可以有效地寻找到一条满足无人机飞行约束、避开障碍物、覆盖所有目标点的最优巡检路径。
一、电力塔巡检的三维路径规划问题建模
在利用蚁群算法进行路径规划之前,需要对电力塔巡检的三维空间环境进行建模。通常,可以将三维空间离散化为三维网格,每个网格代表一个可行的飞行点。为了简化计算并提高效率,可以将电力塔的位置信息、障碍物信息、以及目标检测点信息提取出来,构建一个带权有向图。
- 节点表示:
将离散化的三维空间网格节点表示为图中的节点,每个节点对应无人机在空间中的一个可能位置。节点包含位置坐标(x, y, z),以及是否为目标检测点的信息。
- 边表示:
将相邻节点之间的可行路径表示为图中的边。边的权值表示无人机从一个节点飞行到另一个节点的成本,可以考虑距离、能耗、风险等因素。例如,距离较长的边权值较高,存在障碍物的边权值设为无穷大。
- 障碍物表示:
将电力塔本身、周边建筑物、电线等障碍物在三维空间中进行建模,并在图中标记出障碍物节点,使其无法通过。可以利用三维建模软件或者激光雷达扫描等技术获取电力塔及周边环境的三维信息。
- 目标点表示:
确定需要检测的关键部位,如绝缘子、防震锤、连接金具等,将这些目标点标记为图中的特殊节点。无人机的巡检路径必须覆盖这些目标点,才能完成巡检任务。
- 约束条件:
考虑到无人机的飞行特性和安全性,需要加入一些约束条件,如:
- 最大飞行距离限制:
限制无人机的总飞行距离,以保证其续航能力。
- 最小转弯半径限制:
限制无人机的转弯半径,避免急转弯导致的安全问题。
- 安全距离限制:
保证无人机与电力塔、电线等障碍物之间保持一定的安全距离。
- 飞行高度限制:
限制无人机的飞行高度,避免影响其他空域。
- 最大飞行距离限制:
通过上述建模过程,可以将电力塔巡检的三维路径规划问题转化为一个带约束条件的最优化问题,即在图中寻找一条从起点(无人机起飞点)出发,经过所有目标点,到达终点(无人机降落点),且总权值最小的路径。
二、基于蚁群算法的路径规划算法设计
在完成环境建模后,就可以利用蚁群算法来寻找最优巡检路径。蚁群算法的基本思想是:蚂蚁在觅食过程中,会在走过的路径上留下信息素,信息素浓度越高,吸引其他蚂蚁的概率越大。通过蚂蚁之间的信息交流和正反馈机制,最终可以找到从蚁巢到食物的最短路径。
-
信息素初始化: 在算法开始时,将图中所有边的信息素浓度初始化为一个较小的正值,以保证所有路径都有被选择的机会。
-
蚂蚁路径构建: 每只蚂蚁从起点出发,根据信息素浓度和启发式信息(如距离、风险等)选择下一个节点。选择概率可以用以下公式表示:
scss
P_{ij}(t) = \frac{[\tau_{ij}(t)]^\alpha [\eta_{ij}]^\beta}{\sum_{k \in allowed_i} [\tau_{ik}(t)]^\alpha [\eta_{ik}]^\beta}
其中:
P_{ij}(t)
表示在时刻 t,蚂蚁从节点 i 选择节点 j 的概率。
τ_{ij}(t)
表示在时刻 t,边 (i, j) 上的信息素浓度。
η_{ij}
表示启发式信息,通常用节点 i 到节点 j 的距离的倒数表示,即
η_{ij} = 1 / d_{ij}
。allowed_i
表示蚂蚁在节点 i 允许选择的下一个节点的集合,需要满足约束条件,如没有访问过该节点、与电力塔保持安全距离等。
α
和
β
分别是信息素因子和启发式信息因子,用于调节信息素和启发式信息在路径选择中的权重。
-
信息素更新: 当所有蚂蚁完成一次路径构建后,需要对信息素进行更新。信息素更新包括两个过程:
- Ant-cycle model:
Δτ_{ij}^k = Q / L_k
,如果第 k 只蚂蚁经过边 (i, j),否则为 0。其中,Q
是一个常数,L_k
是第 k 只蚂蚁走过的路径长度。
-
信息素挥发: 为了防止信息素过度积累,需要模拟信息素的挥发过程,降低所有边的信息素浓度。
scss
τ_{ij}(t+1) = (1 - ρ) τ_{ij}(t)
其中,
ρ
是信息素挥发因子,取值范围为 [0, 1]。 -
信息素释放: 在本次迭代中表现较好的蚂蚁(如路径长度较短、风险较低的蚂蚁)会在其经过的路径上释放信息素,增加这些路径的信息素浓度。
ini
τ_{ij}(t+1) = τ_{ij}(t+1) + \sum_{k=1}^m \Delta τ_{ij}^k
其中,
m
是蚂蚁的数量,Δτ_{ij}^k
表示第 k 只蚂蚁在边 (i, j) 上释放的信息素量。Δτ_{ij}^k
的计算方式可以有多种,例如:
- Ant-cycle model:
通过不断迭代,蚂蚁会逐渐聚集在较好的路径上,最终可以找到一条满足约束条件、覆盖所有目标点的最优巡检路径。
三、算法改进与优化
为了进一步提高算法的性能,可以对基本的蚁群算法进行一些改进和优化。
- 动态信息素更新策略:
可以根据迭代过程中路径的实际表现,动态调整信息素的挥发因子和释放量。例如,如果在迭代初期,蚂蚁的路径差异较大,可以适当降低信息素挥发因子,鼓励蚂蚁进行探索;如果在迭代后期,蚂蚁的路径趋于一致,可以适当提高信息素挥发因子,防止算法陷入局部最优。
- 精英策略:
保留每次迭代过程中找到的最优路径,并在后续迭代中给予更高的权重,引导蚂蚁向最优路径靠拢。
- 局部搜索策略:
在蚁群算法的基础上,引入局部搜索算法,如2-opt算法、3-opt算法等,对蚂蚁的路径进行进一步优化,提高路径的质量。
- 与其他算法融合:
可以将蚁群算法与其他路径规划算法,如A算法、Dijkstra算法等进行融合,结合各自的优点,提高算法的效率和精度。例如,可以先利用A算法找到一条初步的路径,然后利用蚁群算法对该路径进行优化。
- 多目标优化:
实际的电力塔巡检任务往往需要考虑多个目标,如路径长度、风险、巡检时间等。可以将蚁群算法扩展到多目标优化领域,利用Pareto支配等概念,找到一组满足不同目标权重的最优解,供决策者选择。
⛳️ 运行结果
🔗 参考文献
Duy Nam Bui and Thuy Ngan Duong and Manh Duong Phung, "**Ant Colony Optimization for 3D Inspection Path
Planning with Multiple Unmanned Aerial Vehicles**," *The 2024 16th IEEE/SICE International Symposium on System Integration (SII 2024)*, Ha Long, Vietnam, 2024, pp. 675-680. [[**IEEE** *Explore*]](https://ieeexplore.ieee.org/document/9549498)[[Citation]](#citation)
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇