【永磁同步电机】永磁同步电机电流预测控制simulink仿真模型

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)因其效率高、功率密度大、转矩惯量比小等优点,在工业自动化、电动汽车、航空航天等领域得到了广泛应用。然而,PMSM本身具有非线性、强耦合等特性,对控制策略提出了更高的要求。电流预测控制(Model Predictive Current Control, MPCC)作为一种先进的控制方法,以其优异的动态性能、易于处理多目标优化问题以及对电机参数变化具有一定的鲁棒性等优点,近年来受到了研究人员的广泛关注。本文将探讨基于Simulink平台的永磁同步电机电流预测控制仿真模型的设计与分析,旨在为PMSM控制系统的研究和开发提供参考。

一、电流预测控制的基本原理

电流预测控制的核心思想是利用电机的数学模型预测电机在不同电压矢量作用下的未来电流值,并根据设定的代价函数,选择能够使代价函数最小化的电压矢量作用于电机。与传统的矢量控制或直接转矩控制方法相比,MPCC无需复杂的调制过程,能够直接输出最优的开关信号,从而实现对电机电流的精确控制。

MPCC控制系统通常包含以下几个关键环节:

  1. 电机模型建立: 建立准确的PMSM数学模型是MPCC的基础。常用的模型包括基于αβ坐标系下的电压方程和磁链方程,以及机械运动方程。这些方程描述了电机电压、电流、磁链和转速之间的关系。

  2. 系统状态预测: 利用建立的电机模型和当前的电机状态(例如电流、转速、转子位置),预测不同电压矢量作用下电机未来几个采样周期的电流值。预测的准确性直接影响到控制性能。

  3. 代价函数设计: 代价函数是MPCC的核心,它用于衡量预测电流与参考电流之间的偏差。代价函数通常包含电流跟踪误差项和一些约束条件项,例如电压变化率限制、开关频率限制等。

  4. 电压矢量选择: 根据代价函数计算结果,选择能够使代价函数最小化的电压矢量作用于电机。常用的选择方法包括穷举法和优化算法。

二、Simulink仿真模型的设计

基于Simulink平台构建永磁同步电机电流预测控制仿真模型,需要合理地组织各个功能模块,并进行参数设置和模型调试。以下是仿真模型设计的主要步骤:

  1. PMSM模型搭建: 使用Simulink的电力系统工具箱或其他自定义模块搭建PMSM模型。模型应包含电机的电压方程、磁链方程和机械运动方程,并能准确地模拟电机的电气和机械特性。关键参数如定子电阻、直轴和交轴电感、永磁体磁链等需根据实际电机参数进行设置。

  2. 参考电流生成模块: 该模块负责生成电机的参考电流。参考电流的生成方法通常基于速度环或转矩环的输出,并经过坐标变换得到αβ坐标系下的参考电流值。

  3. 系统状态估计模块: 该模块用于估计电机的当前状态,包括电流、转速、转子位置等。通常使用电流传感器、速度传感器和位置传感器获取这些信息。考虑到实际应用中传感器噪声的影响,可以在该模块中加入滤波器进行滤波处理。

  4. 电压矢量生成模块: 该模块负责生成所有可能的电压矢量。对于三相逆变器,共有8个电压矢量(6个有源矢量和2个零矢量)。

  5. 电流预测模块: 该模块是MPCC的核心模块,它利用电机模型和当前的电机状态,预测不同电压矢量作用下电机未来几个采样周期的电流值。常用的预测方法包括欧拉法和龙格库塔法。预测步长和预测长度的设置对控制性能有重要影响。

  6. 代价函数计算模块: 该模块根据设定的代价函数,计算每个电压矢量对应的代价函数值。代价函数通常包含电流跟踪误差项和一些约束条件项。权重的设置对控制性能有显著影响,需要根据实际情况进行调整。

  7. 电压矢量选择模块: 该模块根据代价函数计算结果,选择能够使代价函数最小化的电压矢量作用于电机。通常使用“最小选择器”模块实现。

  8. SVPWM(可选)或直接开关信号生成模块: 在传统的矢量控制中,需要使用SVPWM(Space Vector Pulse Width Modulation,空间矢量脉宽调制)技术将选择的电压矢量转换为开关信号。然而,MPCC可以直接输出最优的开关信号,从而省去了SVPWM模块。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值