✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
数字信号处理(Digital Signal Processing,DSP)作为现代科学技术中不可或缺的核心领域,其研究和应用范围日益广泛。随着信号复杂性的不断增加,如何从非平稳信号中提取有效信息、分析信号的时频特性、识别信号中的瞬态成分等成为重要的研究课题。传统的傅里叶变换在分析平稳信号方面具有优势,但对于非平稳信号,其对时间局部化的能力不足。为了克服这一局限,一系列先进的时频分析方法应运而生,其中短时傅里叶变换(Short-Time Fourier Transform,STFT)、离散小波变换(Discrete Wavelet Transform,DWT)、同步压缩变换(Synchrosqueezing Transform,SST)以及瞬态提取变换(Transient Extraction Transform,TET)是当前备受关注且具有重要应用价值的方法。本文旨在对这四种基于数字信号处理的变换方法进行深入探讨,分析它们的原理、特点、优势与不足,并阐述它们在实际应用中的价值。
一、 短时傅里叶变换(STFT)
短时傅里叶变换是处理非平稳信号的经典时频分析方法之一。其核心思想是将非平稳信号通过一个窗函数进行分段,假设在每个短时间窗内信号是近似平稳的,然后对每个短时段进行傅里叶变换,从而获得信号在时间和频率二维平面上的表示。数学上,对于连续时间信号𝑥(𝑡)x(t),其STFT定义为:
𝑆𝑇𝐹𝑇(𝑡,𝜔)=∫−∞∞𝑥(𝜏)𝑤(𝜏−𝑡)𝑒−𝑗𝜔𝜏𝑑𝜏
STFT的优点在于其概念直观,易于理解和实现。通过调整窗函数的长度和形状,可以在一定程度上平衡时间和频率分辨率。然而,STFT存在一个固有的局限性:时间和频率分辨率之间存在“海森堡不确定原理”式的制约。即,为了提高时间分辨率,需要缩短窗函数长度,这将导致频率分辨率下降;反之,为了提高频率分辨率,需要增长窗函数长度,这将导致时间分辨率下降。这种固定的分辨率特性使得STFT在分析具有多尺度特征的信号时显得力不从心。此外,窗函数的选择也会对分析结果产生影响。
二、 离散小波变换(DWT)
与STFT固定分辨率的特性不同,小波变换提供了一种多分辨率分析能力,即在低频部分具有较好的频率分辨率和较差的时间分辨率,在高频部分具有较好的时间分辨率和较差的频率分辨率。这种特性更符合许多实际信号的物理特性,例如在地震信号中,低频成分通常持续时间较长,而高频瞬态事件通常持续时间很短。
小波变换的核心是利用一系列尺度和位移不同的小波基函数对信号进行分解。连续小波变换(Continuous Wavelet Transform,CWT)定义为:
𝐶𝑊𝑇(𝑎,𝑏)=1𝑎∫−∞∞𝑥(𝑡)𝜓∗(𝑡−𝑏𝑎)𝑑𝑡
DWT的优点在于其多分辨率特性,能够更有效地捕捉信号在不同尺度上的特征。它在信号去噪、特征提取、数据压缩等方面表现出色。然而,DWT的缺点在于其表示具有冗余性(对于CWT),且其基函数是离散的,可能导致频率表示的离散化。此外,小波基函数的选择也对分析结果有重要影响,需要根据具体的应用场景选择合适的小波基。
三、 同步压缩变换(SST)
同步压缩变换是一种基于时频重排思想的先进时频分析方法,旨在提高时频表示的能量集中度,克服STFT和CWT存在的模糊性问题。SST的核心思想是利用信号的瞬时频率(Instantaneous Frequency,IF)信息,将分布在时频平面上的能量“同步”地压缩到瞬时频率曲线上。
SST通常基于CWT进行。首先计算信号的CWT,然后利用CWT系数计算出相应的瞬时频率估计。接着,根据瞬时频率估计将CWT的能量在频率方向上进行重排和累加,从而得到同步压缩的时频表示。数学上,同步压缩算子定义为:
𝑇𝑥𝜓(𝑎,𝑏)=∫𝐶𝑏(𝑎)𝑊𝑥𝜓(𝑢,𝑏)𝑑log𝑢
SST的显著优点在于其极高的能量集中度和清晰的频率表示。它能够有效地将信号的不同分量(如多分量信号)在时频图上进行分离,非常适合分析具有多分量、非线性和非平稳特性的信号。SST在机械故障诊断、生物医学信号分析、地球物理勘探等领域展现出强大的应用潜力。然而,SST对噪声比较敏感,且其计算复杂度相对较高。准确估计瞬时频率是SST成功的关键,不准确的瞬时频率估计会导致能量重排的误差。
四、 瞬态提取变换(TET)
瞬态提取变换是一种旨在专门识别和提取信号中瞬态成分的时频分析方法。瞬态信号通常持续时间很短,幅度变化剧烈,携带着重要的信息,例如冲击信号、故障信号等。传统的时频分析方法虽然能够显示瞬态成分,但很难将其与其他连续或平稳成分有效分离。
TET的理论基础和实现方法多样,常见的方法可能结合了其他时频分析技术(如小波变换或同步压缩)并引入特定的瞬态检测或提取算法。例如,一些TET方法可能通过分析时频表示中的高频能量、幅度变化率或利用特定的模板匹配技术来识别瞬态。另一些方法可能通过迭代过程,逐步分离信号中的瞬态成分。
TET的优点在于其能够有效地将信号中的瞬态成分从背景信号中提取出来,便于后续的分析和处理。这对于那些对瞬态事件非常敏感的应用场景至关重要,例如早期故障诊断、异常事件检测等。然而,TET的具体实现方法和性能可能因应用场景和算法设计而异。瞬态的定义本身也具有一定的模糊性,如何准确地界定和提取瞬态成分是TET面临的挑战。
五、 综合比较与应用
下表对STFT、DWT、SST和TET在原理、特性、优势和不足等方面进行简要比较:
表格
特性 | STFT | DWT | SST | TET |
---|---|---|---|---|
原理 | 短时窗傅里叶分析 | 多尺度小波基分解 | 基于CWT和瞬时频率重排 | 针对瞬态成分的识别与提取 |
时频分辨率 | 固定分辨率,时间和频率相互制约 | 多分辨率,低频高频分辨率不同 | 高能量集中度,频率清晰度高 | 侧重于瞬态的时间局部化和能量集中 |
能量集中度 | 一般 | 相对STFT较好,但仍有冗余 | 极高 | 专注于瞬态成分的能量集中 |
对非平稳信号 | 有限 | 较好,能捕捉多尺度特征 | 非常好,能清晰分离多分量 | 专注于瞬态部分的分析与提取 |
对噪声 | 对宽带噪声敏感 | 对某些类型噪声具有去噪能力 | 对噪声敏感,特别是瞬时频率估计误差 | 鲁棒性取决于具体实现算法 |
计算复杂度 | 中等 | 中等 | 相对较高 | 取决于具体算法 |
主要优点 | 概念直观,易于实现 | 多分辨率分析,适合多尺度信号 | 高能量集中度,清晰频率表示 | 有效提取瞬态成分 |
主要缺点 | 分辨率限制,不适合多尺度信号 | 表示冗余(CWT),基函数选择影响结果 | 对噪声敏感,瞬时频率估计是关键 | 定义和提取瞬态具有挑战性,算法依赖性强 |
典型应用 | 语音信号分析,简单非平稳信号分析 | 信号去噪,图像压缩,特征提取,地球物理 | 机械故障诊断,生物医学信号分析,多分量信号分离 | 早期故障诊断,异常事件检测,冲击信号分析 |
在实际应用中,选择哪种变换方法取决于具体的信号特性和分析目标。
- 对于信号局部特性不敏感,或者希望在时间和频率分辨率之间进行一定权衡的简单非平稳信号分析,STFT仍然是一个有效的工具,尤其在计算资源有限的情况下。
- 对于具有多尺度特征的信号,或者需要进行信号去噪和压缩等预处理,DWT通常是更好的选择。
- 对于需要高精度时频分析,特别是多分量非平稳信号的分离和瞬时频率的精确估计,SST是目前公认的非常强大的工具。
- 对于那些核心分析目标是识别和提取信号中短暂、剧烈的瞬态事件的应用,TET提供了针对性的解决方案。
值得注意的是,这些方法并非相互排斥,而是可以相互补充和结合使用。例如,可以先用DWT对信号进行去噪,然后再用SST进行精细的时频分析。也可以在STFT或CWT的基础上,结合瞬时频率估计和同步压缩技术来提升能量集中度。未来的研究方向可能在于发展更加鲁棒、高效且能有效处理复杂信号的新型时频分析和瞬态提取方法,以及将这些方法与其他机器学习和深度学习技术相结合,实现更高级的信号智能分析。
⛳️ 运行结果
🔗 参考文献
[1] 张黎明,张小栋,陆竹风,等.用于稳态视觉诱发电位特征频率提取的同步压缩短时傅里叶变换方法[J].西安交通大学学报, 2017(2).DOI:10.7652/xjtuxb201702004.
[2] 陈晓楠,汪恩铭,于欣瑶,等.基于同步压缩短时傅里叶变换的毫米波雷达人体动作识别[J].现代电子技术, 2023, 46(9):46-49.
[3] 张小栋,张黎明,李睿,等.用于稳态视觉诱发电位特征频率提取的同步压缩短时傅里叶变换方法[J]. 2017.DOI:10.7652/xjtuxb201702004.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇