飞蛾扑火算法优化+Transformer四模型回归打包(内含MFO-Transformer-LSTM及单独模型)

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

飞蛾扑火算法(MFO)原理

飞蛾扑火算法模拟飞蛾围绕火焰飞行的行为,通过飞蛾与火焰(最优解)之间的相互作用来搜索最优解。在算法中,飞蛾根据火焰的位置更新自身位置,以逐渐接近最优解。算法的关键在于合理设置飞蛾位置更新的规则和火焰的动态变化,以实现高效的搜索过程。

Transformer 模型原理

Transformer 是一种基于注意力机制的深度学习模型,能够处理序列数据,捕捉数据中的长程依赖关系。在回归任务中,Transformer 通过多头注意力机制对输入序列进行特征提取,并利用前馈神经网络进行回归预测。其优势在于能够并行计算,提高计算效率,并且在处理长序列数据时表现出色。

MFO 优化 Transformer

  • 参数优化

    :MFO 用于优化 Transformer 的参数,如权重、偏差等。飞蛾的位置可以编码为 Transformer 的参数,通过飞蛾围绕火焰(最优参数组合)的搜索过程,找到最优的 Transformer 参数,以提高模型的回归性能。

  • 结构优化

    :除了参数优化,MFO 还可以用于优化 Transformer 的结构,如层数、头数等。通过调整 Transformer 的结构,使其更好地适应不同的回归任务,提高模型的泛化能力。

MFO-Transformer-LSTM 模型

  • 组合原理

    :MFO-Transformer-LSTM 模型结合了 MFO 优化的 Transformer 和长短期记忆网络(LSTM)的优势。Transformer 负责处理序列数据,捕捉长程依赖关系;LSTM 则用于处理时间序列数据中的短期依赖关系。MFO 优化 Transformer 的参数,提高模型的回归精度,同时 LSTM 可以进一步处理时间序列的动态变化,提高模型对时间序列数据的适应性。

  • 模型构建

    :首先,利用 MFO 优化 Transformer 的参数,构建优化后的 Transformer 模型。然后,将 Transformer 的输出作为 LSTM 的输入,LSTM 对 Transformer 的输出进行进一步处理,最终得到回归预测结果。

单独模型(Transformer、LSTM)与组合模型的比较

  • 性能比较

    :单独的 Transformer 模型在处理长序列数据时具有较高的计算效率和较好的泛化能力,但在处理时间序列数据中的短期依赖关系时可能表现不佳。单独的 LSTM 模型在处理时间序列数据时能够捕捉短期依赖关系,但在处理长序列数据时可能存在梯度消失或梯度爆炸的问题。MFO 优化的 Transformer 结合 LSTM 的组合模型能够同时处理长程和短期依赖关系,提高模型的回归精度和稳定性。

  • 应用场景

    :单独的 Transformer 模型适用于处理具有长程依赖关系的序列数据,如自然语言处理中的文本生成、机器翻译等任务。单独的 LSTM 模型适用于处理时间序列数据,如股票价格预测、电力负荷预测等任务。MFO-Transformer-LSTM 组合模型适用于处理既具有长程依赖关系又具有时间序列特征的数据,如复杂的时间序列预测任务、多变量时间序列分析等。

模型应用

  • 时间序列预测

    :在时间序列预测任务中,MFO-Transformer-LSTM 模型可以用于预测电力负荷、股票价格、气象数据等。通过对历史时间序列数据的学习,模型能够捕捉数据中的长期和短期依赖关系,提高预测的准确性。

  • 多变量回归

    :对于多变量回归任务,如预测产品质量、能源消耗等,MFO 优化的 Transformer 能够处理多个变量之间的关系,结合 LSTM 对时间序列的处理能力,实现准确的回归预测。

飞蛾扑火算法优化的 Transformer 以及相关的组合模型(如 MFO-Transformer-LSTM)在回归任务中具有较好的性能和适应性,能够处理复杂的序列数据和时间序列数据,为时间序列预测和多变量回归等任务提供了有效的解决方案。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

   % 清空变量

clc                     % 清空命令行

%%  导入数据

res = xlsread('data.xlsx');

%%  数据分析

num_size = 0.8;                              % 训练集占数据集比例

outdim = 1;                                  % 最后一列为输出

num_samples = size(res, 1);                  % 样本个数

res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)

num_train_s = round(num_size * num_samples); % 训练集样本个数

f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集

P_train = res(1: num_train_s, 1: f_)';

T_train = res(1: num_train_s, f_ + 1: end)';

M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';

T_test = res(num_train_s + 1: end, f_ + 1: end)';

N = size(P_test, 2);

%%  数据归一化

[P_train, ps_input] = mapminmax(P_train, 0, 1);

P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值