作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
电力系统短期负荷预测是保障电力系统安全稳定运行和经济高效调度的关键技术。准确的短期负荷预测能够为电力调度中心提供决策依据,有助于合理安排发电机组启停、优化电网运行方式、减少备用容量需求,进而提高电力系统的可靠性和经济性。随着电力系统规模的不断扩大和负荷特性的日益复杂,传统的预测方法面临着挑战。近年来,基于机器学习的预测模型因其强大的非线性拟合能力和自学习能力,在短期负荷预测领域得到了广泛应用。
极限学习机(Extreme Learning Machine, ELM)作为一种单隐层前馈神经网络(Single-Layer Feedforward Neural Network, SLFN),以其训练速度快、泛化能力强等优点,在诸多领域展现出潜力。ELM的独特之处在于其隐层偏置和输入层到隐层权值是随机生成的,只需要计算输出层权值,极大地简化了训练过程。然而,随机生成的参数可能会导致ELM的预测精度不稳定,容易陷入局部最优,尤其是在处理复杂、非线性关系的数据时。
为了克服ELM的固有缺陷,研究人员开始探索使用各种优化算法来优化ELM的参数,以期提高其预测性能。白鲸算法(Beluga Whale Optimization, BWO)和鹭鹰算法(Secretarybird Optimization Algorithm, SOA)是近年来提出的两种新型仿生智能优化算法。白鲸算法模拟白鲸在海洋中的捕食、觅食和迁徙行为,具有较强的全局搜索能力和收敛速度。鹭鹰算法则模拟鹭鹰在非洲草原上的捕食策略,通过模拟鹭鹰的步行、跳跃和捕食行为,具有优秀的勘探和开发能力。将这些新型优化算法应用于ELM的参数优化,有望进一步提升电力系统短期负荷预测的精度和稳定性。
本文旨在深入研究基于ELM、白鲸算法优化ELM(BWO-ELM)以及鹭鹰算法优化ELM(SOA-ELM)在电力系统短期负荷预测中的应用。通过对三种模型的预测性能进行对比分析,评估新型智能优化算法对ELM预测能力的提升效果,并为实际电力系统负荷预测提供理论和技术支持。
研究背景与相关工作
电力系统短期负荷预测的研究历史悠久,方法众多。根据预测原理的不同,传统方法主要包括时间序列分析法(如ARIMA模型)、回归分析法和专家系统法。这些方法依赖于对负荷序列的线性或特定非线性关系的假设,对于处理复杂、动态变化的电力负荷数据存在局限性。
随着人工智能技术的发展,基于机器学习的预测方法逐渐成为研究热点,其中包括支持向量机(Support Vector Machine, SVM)、人工神经网络(Artificial Neural Network, ANN)和深度学习模型等。神经网络模型,特别是前馈神经网络,因其强大的非线性映射能力,在负荷预测中取得了显著成果。然而,传统的基于梯度下降法的神经网络训练过程存在收敛速度慢、易陷入局部最优等问题。
ELM的出现为神经网络训练带来了新的思路。由Huang等人于2004年提出的ELM,颠覆了传统神经网络的训练模式,通过随机生成隐层参数,将训练问题转化为线性方程组的求解,显著提高了训练效率。近年来,许多研究将ELM应用于电力系统负荷预测,并取得了一定的效果。然而,ELM的随机性导致其预测结果存在波动性,促使研究人员寻求优化其参数的方法。
优化算法在机器学习模型参数寻优中扮演着重要角色。遗传算法(Genetic Algorithm, GA)、粒子群优化算法(Particle Swarm Optimization, PSO)、模拟退火算法(Simulated Annealing, SA)等经典优化算法已被广泛应用于ELM的参数优化。然而,这些算法在处理高维、非线性问题时可能存在早熟收敛、收敛精度不高等问题。
近年来,随着仿生智能优化算法的不断涌现,一些新型算法在解决复杂优化问题方面表现出色。白鲸算法和鹭鹰算法作为较新的智能优化算法,其独特的搜索机制使其有望在优化ELM参数方面取得更好的效果。已有部分研究将白鲸算法或鹭鹰算法应用于其他领域的优化问题,但将其应用于优化ELM进行电力系统短期负荷预测的研究相对较少。因此,本文将重点探讨白鲸算法和鹭鹰算法在ELM参数优化中的应用及其在电力系统短期负荷预测中的效果。
研究方法
本文将构建基于ELM、BWO-ELM和SOA-ELM的三种短期负荷预测模型,并对它们进行性能评估和对比分析。
3.1 数据集准备
电力系统短期负荷预测数据通常包含历史负荷数据、气象数据(如温度、湿度、风速)、日期类型(工作日、周末、节假日)等影响负荷的因素。本文将选取典型的电力系统负荷数据作为研究对象。数据预处理是模型构建的重要环节,包括数据清洗、缺失值处理、异常值检测和特征工程。考虑到负荷的周期性(日周期、周周期、年周期)以及气象因素的影响,我们将构建合适的输入特征集,例如:
-
前一小时、前一天、前一周的负荷值。
-
当前时刻的日期类型(工作日/周末/节假日)。
-
当前时刻的气温、湿度等气象数据。
-
其他可能影响负荷的特征(如季节、特殊事件等)。
为了评估模型的泛化能力,数据集将划分为训练集、验证集和测试集。训练集用于训练模型,验证集用于调整模型参数,测试集用于评估模型的最终预测性能。
3.2 ELM模型
ELM模型的数学表达式如下:
3.3 基于优化算法的ELM模型
3.3.1 白鲸算法优化ELM (BWO-ELM)
白鲸算法(BWO)是一种模拟白鲸觅食、社交和迁徙行为的群体智能优化算法。白鲸算法的主要步骤包括:
- 初始化种群:
随机生成一定数量的白鲸个体,每个个体代表一组ELM隐层参数。
- 评估适应度:
计算每个个体对应的ELM模型在训练集上的预测误差(适应度值)。
- 探索阶段:
模拟白鲸的觅食和社交行为,通过位置更新公式探索搜索空间,寻找潜在的最优区域。
- 开发阶段:
模拟白鲸的迁徙行为,收敛到已发现的最优区域。
- 判断终止条件:
当达到最大迭代次数或满足其他终止条件时,停止迭代,输出最优个体对应的ELM参数。
在BWO-ELM中,白鲸个体的维度等于ELM隐层参数的数量(隐层节点数 LL 乘以 (输入特征数 nn + 1))。BWO通过迭代更新白鲸个体的位置,寻找到使ELM在训练集上预测误差最小化的隐层参数组合。
3.3.2 鹭鹰算法优化ELM (SOA-ELM)
鹭鹰算法(SOA)是一种模拟鹭鹰捕食行为的群体智能优化算法。鹭鹰算法的主要步骤包括:
- 初始化种群:
随机生成一定数量的鹭鹰个体,每个个体代表一组ELM隐层参数。
- 评估适应度:
计算每个个体对应的ELM模型在训练集上的预测误差(适应度值)。
- 步行阶段:
模拟鹭鹰在地面上步行搜索猎物的过程,进行局部搜索。
- 跳跃阶段:
模拟鹭鹰跳跃捕食猎物的过程,进行全局搜索。
- 判断终止条件:
当达到最大迭代次数或满足其他终止条件时,停止迭代,输出最优个体对应的ELM参数。
在SOA-ELM中,鹭鹰个体的维度与BWO-ELM相同。SOA通过迭代更新鹭鹰个体的位置,寻找到使ELM在训练集上预测误差最小化的隐层参数组合。
3.4 性能评估指标
为了全面评估不同模型的预测性能,我们将采用以下常用的评估指标:
- 均方根误差 (RMSE):
衡量预测值与实际值之间的偏差大小,对大误差比较敏感。
- 平均绝对误差 (MAE):
衡量预测值与实际值之间的平均偏差大小,对异常值不如RMSE敏感。
- 平均绝对百分比误差 (MAPE): 衡量预测误差相对于实际值的百分比,适用于比较不同量级数据集的预测性能。
讨论
基于白鲸算法和鹭鹰算法优化的ELM模型在电力系统短期负荷预测中相比标准ELM模型具有更好的预测性能。这主要得益于优化算法能够有效寻找到更优的ELM隐层参数,克服了标准ELM随机初始化参数可能带来的局限性。
白鲸算法和鹭鹰算法作为新型智能优化算法,其独特的搜索机制使其在复杂、高维的参数空间中具有较强的寻优能力。白鲸算法模拟白鲸的群体协作和觅食策略,能够平衡全局搜索和局部开发;鹭鹰算法模拟鹭鹰的步行和跳跃捕食行为,具有良好的勘探和开发能力。将这些算法应用于ELM参数优化,能够提高模型的非线性拟合能力和泛化能力。
然而,优化算法的引入也增加了模型的计算开销。相比标准ELM极快的训练速度,基于优化算法的ELM模型需要更多的计算时间进行参数寻优。在对预测实时性要求极高的场景下,需要权衡预测精度和计算效率。此外,优化算法的性能也受到参数设置的影响,如何选择合适的算法参数需要进一步研究和经验积累。
未来的研究可以从以下几个方面展开:
- 更深入的算法参数分析:
对BWO和SOA算法的关键参数进行敏感性分析,探究其对优化效果和计算效率的影响,并探索自适应参数调整策略。
- 多目标优化:
除了预测精度,还可以考虑将模型的鲁棒性、计算效率等作为优化目标,采用多目标优化算法进一步提升模型的综合性能。
- 与其他优化算法的比较:
将BWO和SOA与其他先进的智能优化算法进行对比,评估它们在ELM参数优化中的相对优劣。
- 模型集成:
探索将BWO-ELM和SOA-ELM与其他预测模型进行集成,构建混合预测模型,进一步提高预测精度。
- 考虑不确定性:
将不确定性分析引入预测模型中,对预测结果进行概率预测或区间预测,为电力系统的风险评估提供支持。
- 实际应用案例研究:
在不同地区、不同规模的电力系统上进行实际应用案例研究,验证模型的有效性和泛化能力。
结论
本文对基于ELM、白鲸算法优化ELM和鹭鹰算法优化ELM的电力系统短期负荷预测进行了比较研究。理论分析和实验设计表明,通过白鲸算法和鹭鹰算法对ELM隐层参数进行优化,能够有效提升ELM的预测性能,克服其随机性带来的不足。白鲸算法和鹭鹰算法作为新型智能优化算法,其独特的搜索机制使其在解决ELM参数寻优问题上展现出潜力。
尽管优化算法的引入增加了计算开销,但对于对预测精度要求较高的电力系统短期负荷预测任务而言,这种提升是具有价值的。未来的研究应进一步探索算法参数优化、多目标优化、模型集成以及不确定性分析等方向,以不断提高电力系统短期负荷预测的精度、稳定性和实用性,为电力系统的安全、稳定和经济运行提供有力保障。
⛳️ 运行结果
🔗 参考文献
[1] 蔡海良,胡凯,李军,等.基于BWO-ELM算法与VR-GIS技术的电力光缆故障诊断及定位研究[J].计算机测量与控制, 2022, 30(12):98-104.DOI:10.16526/j.cnki.11-4762/tp.2022.12.015.
[2] 李世隆,许辰一,王楠,等.基于BWO-ELM的水稻氮素无人机高光谱反演研究[J].智能化农业装备学报(中英文), 2024, 5(3):14-21.DOI:10.12398/j.issn.2096-7217.2024.03.002.
[3] 王帅,郑彤,孙瑶瑶,等.基于激光诱导光谱的石墨舟激光清洗实时检测技术[J].自动化与仪器仪表, 2024(6):215-219.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇