✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本题是基于用电可靠性的 10KV 低压配电网规划问题。我们建立了双层规 划模型、用户可靠性评估模型和孤岛划分模型并通过遗传-模拟退火算法、最小 生成树算法、动态规划算法解决了不同情况下的配电网规划问题。
针对问题一:以配电网建造费用作为总规划目标,建立双层规划模型。对于 上层主线规划模型,首先通过 K-means 聚类算法对负荷进行分类,以此确定分 支数量,并将聚类中心作为初始二级分叉点。通过遗传-模拟退火算法得到主线 的最佳规划方案,并得到一级分叉点位置;对于下层支线规划模型,进行二次嵌 套聚类,运用等效电源和加权距离的思想建立模型,得到支线的最佳规划和二三 级分叉点的位置。通过双层规划迭代优化二级分叉点位置,得到最佳的单供配电 网规划。运用苏州工业园实例中的数据, 得到单供配电网最低建设费用结果为
3503.13 千元,并计算出各个用户的用电可靠性。
针对问题二:综合考虑聚类中心点的聚集程度以及电源的相对位置关系, 采用最小生成树算法来确定各个负荷点的供电归属问题。随后使用问题一建立 的模型和苏州工业园实例中的数据得到两个单供配电网最低建设总费用为
3720.14 千元,并计算出各用户的用电可靠性。
针对问题三:以提高配电网中最低的用电可靠性为目标;以建造总费用上限 为X,双供配电网用户供电调度原则,主线限流条件为约束条件建立优化模型。 首先对配电网进行最小区域划分。然后,针对不同的故障情况进行动态孤岛划分; 建立了孤岛划分模型,采用动态规划的算法,得到表征不同故障发生时负荷点供 电情况的关联矩阵。最后,我们改进了问题一二中的可靠性评估模型,得到双供 配电网用电可靠性评估模型,以提高配电网中最低的用电可靠性为目标,讨论不 同联络线情况下的最佳方案。
针对问题四:延用双供配电网用电可靠性评估模型,以建设费用最小为优化 目标;以每个用户的用户可靠性不低于 Y% ,双供配电网用户供电调度原则,主 线限流条件为约束条件建立模型,得到最佳方案。
关键词:双层规划遗传-模拟退火算法配电网规划动态规划用电可靠性
1 问题重述
1.1 背景分析
随着我国发展,供电的需求越来越大,配电网规划的重要性与日俱增。配电 网在电力系统中起着承上启下的作用,承担着从发电站获得电源并向不同的用户 分配的作用。在已知电站和用户地理位置的条件下, 合理地规划电网能极大地减 少线路和开关的铺设费用并提高用户的用电可靠性。
1.2 相关信息
在实际的配电网规划中,常常会出现多级分叉点问题,即在分叉点的某条支 路上仍存在其他分叉点。为了更好地分析问题,现对分叉点进行简单的定义,在 后文中会有更加详细的讨论,详见 5.1.1 节。现定义,在主线上的分叉点为一级 分叉点;由一级分叉点引出的支线与其他支线的交点为二级分叉点;同理可得三 级分叉点的定义。
1.3 问题提出
本题要求建立数学模型并回答以下问题:
问题一:已知一个电源和一批用户的平面坐标、每个用户用电功率需求、每 个设备单元建造费用。以费用最低为目标求单供树状配电网,给出树状配电网的 分叉点坐标,并计算每个用户的用电可靠性。
问题二:在问题一的基础上增加一个电源。以费用最低为目标设计两个单供 树状配电网,给出树状配电网的分叉点坐标,并计算每个用户的用电可靠性。
问题三:在问题二的两个单供配电网之间建立若干条联络线形成双供配电网, 并扩充供电功率。以建造双供配电网总花费上限为X 为约束条件,以最低的用 电可靠性达到最大值为优化目标,设计联络线和开关。画出联络线拓扑简略图, 并计算双供配电网中每个用户的用电可靠性。
问题四:在问题二的两个单供配电网之间建立若干条联络线形成双供配电网, 并扩充供电功率。以双供配电网中每个用户的用电可靠性不低于 Y%为约束条件,
以建设费用最低为优化目标,设计双供配电网。画出联络线拓扑简略图,并计算 双供配电网中每个用户的用电可靠性。
2 问题分析
2.1 问题一的分析
这是一个单电源配电网规划问题。配电网建造费用作为总规划目标;开关设 置原则,开关价格与限流,单位线路造价,变电站与负荷的平面坐标为约束条件。 为简化问题,我们将配电网规划拆解成两部分规划:主线规划和支线规划,建立 双层规划模型。
上层规划以主线为优化对象;基于负荷的坐标,我们通过聚类算法对负荷进 行分类,以此确定分支数量,并将聚类中心作为初始二级分叉点。在此基础上, 通过遗传-模拟退火算法得到主线的最佳规划,并得到一级分叉点位置。
下层规划以支线为优化对象,对每个簇进行二次嵌套聚类分析,运用加权距 离和等效电源的思想建立模型,得到支线的最佳规划和二三级分叉点的位置。
上层规划和下层规划并不是严格独立的,上下层的结果会相互影响。我们通 过不断迭代优化二级分叉点的位置,最终得到最佳的配电网规划和最小建设费用。
最后我们建立用户可靠性评估模型,计算出每个故障单元的故障率,根据故 障单元的独立性,最终算出每个用户的用电可靠性。
2.2 问题二的分析
问题二要求设计两个单供配电网,使得总建造费用最低。我们需要先解决负 荷的供电归属问题,再延用问题一的思路和模型设计两个单供配电网。
首先,我们要解决负荷的供电归属问题,即确定负荷点由电源 1 还是电源 2 供电。当聚类簇数为k时,总共会出现2k 种情况,排除由某一个电源为所有负荷供电的情况,仍有2k − 2种情况。若直接采用第一问的模型对所有情况进行遍历 计算,计算量将十分巨大。由于最小生成树的边长总和一定程度上能反映负荷与 电源的聚集程度,因此可以采取比较最小生成树长度总和的方法来简化计算量,
选取出几种总长度较小的情况做后续的优化。
然后,我们分别对第一步筛选出几种负荷归属方案,使用问题一的双层规划 模型,得到多种规划方案。我们将总造价最低的方案确定为最优方案。
最后,我们应用第一问的可靠性评估模型计算出各个用户的用电可靠性。
2.3 问题三的分析
在问题二两个单供配电网规划的基础上,新增若干条联络线和开关,形成双 供配电网。我们以提高配电网中最低的用电可靠性为目标;以建造总费用上限为 X,双供配电网用户供电调度原则和主线限流条件为约束条件建立模型。
首先,我们需要确定联络线的个数。由于总花费上限没有给出具体数据, 因 此我们对一条联络线,两条联络线,三条联络线的情况分别进行优化并得出建造 总费用。
其次,我们需要确定联络线的位置。我们通过配电网的最小区域划分, 对联 络线的连接位置进行遍历。
对每种联络线设计方案,我们针对不同的故障情况进行动态孤岛划分。为了 满足双供配电网用户供电调度原则,依据划分的最小配电区域,我们通过关联矩 阵表征不同故障发生时负荷点的供电情况,采用动态规划的算法,实现孤岛划分。
最后,我们建立双供配电网可靠性评估模型。针对双供配电网多种供电线路 方案,对问题一,二中的用户可靠性模型进行改进,得到双供配电网的可靠性评 估模型,计算出每种联络线规划的最低的用户可靠性,选择最低用户可靠性最大 的方案作为最佳方案。
2.4 问题四的分析
问题四和问题三同理,改变了问题三的约束条件与优化目标。以降低建设费 用为优化目标;以每个用户的用户可靠性不低于 Y%,双供配电网用户供电调度 原则和主线总限流为约束条件。
首先,我们需要确定联络线的个数。同样由于最低的用户可靠性数据未定, 因此我们只讨论连接一条联络线和两条联络线的情况并分别得出建造总费用。
其次,在确定了联络线的数量后,我们仍按照问题三的思路对联络线的连接
位置进行遍历,用关联矩阵去表征不同故障发生时的负荷点供电情况。
最后,我们通过双供配电网用户用电可靠性评估模型,计算出每种联络线规 划方案的最低建造费用,选择建造费用最低的方案作为最佳方案。
3 模型假设
为了简化模型,本文做出以下合理的假设或条件约束:
1. 假设在电网运行过程中不产生线路损耗的费用。
2. 假设存在一个分叉点下可能还会有其他分叉点的情况,为了简化模型本文只考虑到三级分叉点。
3. 假设每个单元设备是否故障是相互独立的。
4. 假设开关在线路中可视为一个理想的质点。
5. 假设联络线只能从主线连接到主线。
6. 假设一级分叉点连接两个二级分叉点时,将该一级分叉点视为两个无限接近 的一级分叉点。
5 模型的建立与求解
5.1 问题一模型的建立与求解
⛳️ 运行结果
📣 部分代码
contact_line2_length);
% 算上联络线到一级分叉点的可靠性
contact_line2_re1 = contact_line2_re1 *
tmp_reliability;
% 负荷可靠性计算
tmp_re = 0;
for e = 1:size(info1{2}, 2)
tmp_contact_re = 1;
if j >= 2 * (size(info1{2}, 2) - e) + 1 % 故障发
生在联络线 1 之前,可靠性要计算联络线 1
tmp_contact_re = tmp_contact_re * (1 -
contact_line_re1);
end
if j2 >= 2 * (size(info1{2}, 2) - e) + 1 % 故障发
生在联络线 2 之前,可靠性要计算联络线 2
tmp_contact_re = tmp_contact_re * (1 -
contact_line2_re1);
end
tmp_re = tmp_re + decision_mat1(m, n, e) *
possibility1(m, e) * (1 - tmp_contact_re
🔗 参考文献
[1]孙若萱. 计及分布式电源的高可靠性配电网规划方法研究[D].东南大学,2019.
[2] 査伟雄,孙敬. 基于模拟退火算法的危险货物道路运输路径优化双层规划模型 [J]. 公路交通科技,2012,29(04):101-106.
[3] 解晨, 韦雄奕. 模拟退火算法和遗传算法的比较与思考[J].电脑知识与技 术,2013,9(19):4418-4419.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类