✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、研究背景
在数字信号处理领域,随着技术的不断发展,对信号特性的深入研究变得愈发重要。混沌信号作为一种具有非线性、非周期、对初始条件高度敏感等特性的信号,广泛存在于物理、生物、通信等多个领域。例如,在通信系统中,混沌信号可用于保密通信,利用其复杂的特性增强信息传输的安全性;在生物医学领域,生物电信号中也可能蕴含混沌特性,对其研究有助于疾病的诊断和治疗 。而复杂度作为描述混沌信号不规则性和不确定性的关键指标,深入研究混沌信号复杂度,能够帮助我们更好地理解混沌信号的内在结构和动力学行为,为数字信号处理中的信号分析、特征提取、信号生成等任务提供重要的理论支持和技术手段。
二、混沌信号与复杂度概念
2.1 混沌信号基本特征
混沌信号具有独特的动力学特性。其最显著的特征是对初始条件的极端敏感性,即初始条件的微小变化会随着时间的推移导致信号轨迹的巨大差异,这一特性也被称为 “蝴蝶效应”。此外,混沌信号虽然表现出不规则的、类似随机的行为,但它并非真正的随机信号,而是由确定性的非线性系统产生,具有内在的规律性和结构。从频谱角度来看,混沌信号的频谱是连续的,覆盖较宽的频率范围,这与周期信号和一般的随机信号具有明显区别。
2.2 复杂度概念
复杂度是一个用于量化信号不规则性和不确定性程度的概念,它反映了信号中所包含的信息量和结构的复杂程度。对于混沌信号而言,复杂度的度量有助于区分不同混沌系统产生的信号,以及分析混沌信号在不同条件下的变化情况。不同的复杂度度量方法从不同角度描述信号的复杂特性,常见的复杂度度量方法包括近似熵、样本熵、排列熵、模糊熵等,每种方法都有其独特的原理和适用场景。
三、混沌信号复杂度的度量方法
3.1 近似熵(Approximate Entropy, ApEn)
近似熵由 Pincus 于 1991 年提出,它基于时间序列的模式匹配统计。其基本思想是通过比较时间序列中长度为 和 的子序列的相似程度来度量信号的复杂度。具体计算过程中,首先将时间序列重构为相空间,然后计算在给定容差 下,长度为 的子序列与其他子序列的相似概率,进而得到近似熵值。近似熵值越大,表示信号的复杂度越高,即信号中蕴含的新模式越多 。然而,近似熵存在一定的局限性,如对数据长度有较高要求,且不具有严格的对称性。
3.2 样本熵(Sample Entropy, SampEn)
样本熵是近似熵的改进版本,由 Richman 和 Moorman 在 2000 年提出。与近似熵相比,样本熵在计算过程中避免了自匹配问题,具有更好的统计性能和抗噪能力。样本熵同样基于相空间重构,通过计算长度为 和 的子序列的相似概率来度量复杂度,但计算方式更为简洁和准确。样本熵值越大,说明信号的复杂度越高,在分析混沌信号的细微变化和区分不同混沌特性的信号时表现出良好的性能。
3.3 排列熵(Permutation Entropy, PE)
排列熵基于时间序列的排列模式。它将时间序列中连续的 个数据点按照大小顺序进行排列,得到不同的排列模式,然后统计各种排列模式出现的概率,通过这些概率计算排列熵值。排列熵反映了时间序列中数据的有序程度,熵值越高,表示信号的复杂度越高,即数据的排列模式越随机。排列熵计算简单,对信号的动态变化较为敏感,适用于快速检测混沌信号的变化和异常情况 。
3.4 模糊熵(Fuzzy Entropy, FuzzyEn)
模糊熵结合了模糊理论和样本熵的思想,通过引入模糊隶属度函数来度量时间序列子序列之间的相似性。在计算过程中,利用模糊隶属度函数代替传统的距离度量方式,能够更准确地捕捉信号的非线性特征和复杂结构。模糊熵对数据长度的依赖性较小,且在处理含噪信号时具有较好的稳定性,在混沌信号复杂度分析中得到了广泛应用。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类