✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、研究背景
在深度学习技术不断发展的当下,Transformer 和 BiGRU(双向门控循环单元)在自然语言处理、时间序列分析等领域取得了显著成果。Transformer 凭借自注意力机制,能够高效捕捉序列中的长距离依赖关系;BiGRU 则通过双向结构,对序列数据的前后文信息进行深度挖掘 。将二者组合,可充分发挥各自优势,在复杂序列数据处理任务中实现更精准的预测与分析。然而,这类复杂的深度学习模型如同 “黑箱”,用户难以理解模型如何利用输入特征做出决策,限制了模型在医疗诊断、金融风险评估等对可解释性要求严格领域的应用。SHAP(SHapley Additive exPlanations)分析作为一种强大的模型可解释性工具,能够量化每个输入特征对模型输出的贡献,为深入理解 Transformer-BiGRU 组合模型的决策过程提供了有效途径。
二、核心模型与分析方法原理
2.1 Transformer 模型原理
Transformer 的核心在于自注意力机制(Self-Attention Mechanism),它打破了传统循环神经网络(RNN)的顺序处理限制,能够并行计算序列中元素之间的关联程度。在处理输入序列时,Transformer 通过将输入映射为查询(Query,Q)、键(Key,K)和值(Value,V)三个向量,利
当前计算重要的部分 。多头注意力机制(Multi-Head Attention)进一步扩展了自注意力的能力,通过多个不同的注意力头从不同角度捕捉序列特征,最后将各头的结果拼接并线性变换,得到最终的特征表示。此外,Transformer 还包含位置编码(Positional Encoding),用于为序列添加位置信息,使其能够区分不同位置的元素,从而有效处理顺序相关的数据。
2.2 BiGRU 模型原理
BiGRU 由两个方向相反的门控循环单元(GRU)组成。GRU 通过引入重置门(Reset Gate)和更新门(Update Gate),解决了传统 RNN 中梯度消失和梯度爆炸的问题,能够更好地处理长序列数据。在 BiGRU 中,正向的 GRU 从序列起始端向末端处理数据,学习历史信息对当前状态的影响;反向的 GRU 从序列末端向起始端处理数据,捕捉未来信息对当前状态的潜在作用 。两个方向的 GRU 输出在隐藏层进行拼接,使模型能够同时利用序列的前后文信息,更全面地挖掘数据的时间依赖关系,在时间序列预测、文本语义理解等任务中表现出色。
2.3 Transformer-BiGRU 组合模型优势
将 Transformer 与 BiGRU 组合,实现了优势互补。Transformer 强大的自注意力机制能够快速捕捉序列中的全局特征和长距离依赖,提取复杂的语义或时序模式;BiGRU 则擅长处理局部的时间依赖关系,对序列数据进行细致的时序分析 。二者结合,使模型在处理长序列数据时,既能把握整体结构,又能深入分析局部细节,在多个领域的复杂任务中展现出更高的预测精度和更强的泛化能力。
2.4 SHAP 分析原理
SHAP 分析基于博弈论中的 Shapley 值概念,旨在为模型的每个输入特征分配一个贡献值,即 SHAP 值。在模型预测过程中,将每个输入特征视为博弈中的参与者,模型的预测结果看作是所有参与者共同合作的收益。SHAP 值衡量的是在所有可能的特征组合顺序下,某个特征加入组合时对模型输出的平均边际贡献 。对于深度学习模型,通常采用近似算法计算 SHAP 值,如 DeepSHAP。它通过对模型进行局部线性近似,利用采样和回归的方法,高效地估算每个特征的 SHAP 值,从而揭示模型的决策逻辑,帮助用户理解不同特征对模型输出的影响程度和方向。
三、Transformer-BiGRU 组合模型构建与训练
3.1 模型架构设计
Transformer-BiGRU 组合模型主要分为三个部分:输入层、特征提取与处理层、输出层。
- 输入层:对原始输入数据进行预处理,如自然语言处理任务中对文本进行分词、编码,时间序列分析任务中对数据进行归一化等,并将处理后的数据转换为适合模型输入的张量形式。
- 特征提取与处理层:首先,数据进入 Transformer 模块,通过多头注意力机制和位置编码,提取序列的全局特征和长距离依赖关系;然后,Transformer 的输出作为 BiGRU 的输入,BiGRU 进一步挖掘数据的局部时间依赖关系,对特征进行细化处理 。
- 输出层:根据具体任务需求,将 BiGRU 的输出通过全连接层进行线性变换,再经过激活函数(如 Softmax 用于分类任务,Identity 用于回归任务),得到最终的预测结果。
3.2 模型训练
在训练过程中,根据任务类型选择合适的损失函数,如交叉熵损失函数(Cross-Entropy Loss)用于分类任务,均方误差损失函数(Mean Squared Error Loss)用于回归任务。采用随机梯度下降(SGD)及其变种算法(如 Adam、Adagrad 等)作为优化器,通过反向传播算法更新模型的参数,不断调整模型的权重,使损失函数最小化,从而提高模型在训练数据上的拟合能力和在测试数据上的泛化能力 。同时,为防止模型过拟合,可采用正则化方法(如 L1、L2 正则化)、Dropout 技术或早停策略(Early Stopping)。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类