/**********************************************************************************************
*文件说明:
* Mnist手写数字识别----对应的CNN神经网络模型的详细解释
*时间地点:
* 陕西师范大学----2016.10.26
**********************************************************************************************/
(一)CNN神经网络模型的概述:
在我没有学习卷积神经网络(深度学习)之前,我看了很多的神经网络,什么人工神经网络,BP神经网络等等,在学习
神经网络的时候,经常会见到下面的网络模型或者说图片吧:
那么问题来了,如果我们要用程序来实现这些神经网络的话,使用什么样的形式去实现它呢?
1---结构体+结构体指针
2---类
总之,是一个比较困难的事情.现在caffe为我们提供了一种很方便的方法:使用网络配置文件去实现它,如果拿Mnist
手写数字识别所使用的CNN神经网络模型LeNet来说的话,它的神经网络模型的描述文件就是/home/wei/caffe/examples
/mnist/文件夹下面的:lenet_train_test.prototxt
(二)LeNet模型的详解
在我们具体看这个网络模型描述文件之前,我们首先使用caffe的可视化程序,将这个网络模型画出来.我们使用/home
/wei/caffe/python/文件夹下的draw_net.py这个python脚本程序.
具体的命令如下所示:
sudo python ./python/draw_net.py ./examples/mnist/lenet_train_test.prototxt ./examples/mnist/lenet_train_test.jpeg
结合上面我画的LeNat-CNN模型的网络结构图,然后去看网络描述(配置文件),试着理解LeNet模型(最简单的卷积神经网络模型):
那么,现在,我们来具体看一下lenet_train_test.prototxt这个文件的具体内容:
//***********************************************************************************************
name: "LeNet" //[1]网络(Net)的名称为:LeNet
/***********************************************************************************************
*模块1:
* 1--数据层----Data Layer
* 2--该数据层只在[训练]阶段有效
***********************************************************************************************/
layer { /****[1]定义一个数据层****/
name: "mnist" //[1]数据层的名字为--mnist
type: "Data" //[2]层的层类型:Data(数据层)(数据库作为输入)
top: "data" //[3]数据层的输出blob有两个:data,label(对应生成的CNN图看)
top: "label"
include { //[4]include里面的数据说明,该层只在训练阶段有效
phase: TRAIN
}
transform_param { //[5]数据预处理,转换参数的定义
scale: 0.00390625 //[5]特征归一化系数,将范围为[0,255]的MNIST数据归一化为[0,1]
}
data_param { //[6]数据层的参数
source: "examples/mnist/mnist_train_lmdb"//[1]由于该数据层的数据来源是数据库(由层类型Data指定),
// 因此,source对应的就是数据库LMDB的路径,也就是训练
// 数据和测试数据的path
batch_size: 64 //[2]批量数目,表示caffe一次从数据库LMDB读入的图片的数量
backend: LMDB //[3]数据库的类型说明区别于LevelDB数据库
}
}
/***********************************************************************************************
*模块2:
* 1--数据层----Data Layer
* 2--一个新的数据层,名字也叫做mnist,输出的blob也是data和label,但是这个数据层只在分类阶段有效,Test
* 3--图片大小28*28
***********************************************************************************************/
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_test_lmdb"
batch_size: 100
backend: LMDB
}
}
/***********************************************************************************************
*模块3:
* 1--第一个卷积层---Convolution
* 2--定义一个新的卷积层,卷积层的输入blob为data;输出blob为conv1
* 3--Convolution层,使用一系列可训练的卷积核(相当于空间滤波的滤波算子)对输入图像进行卷积操作,每组
* 卷积核生成输出图像中的一个特征图(相当于对输入图像,使用20个不同的滤波算子(卷积)进行20次卷积
* 之后生成的20张经过滤波的特征图)
* 4--输出图片大小:(28+2*0-5)/1+1=(img_h+2*pad_h-kernel_h)/stride_h+1======24*24
***********************************************************************************************/
layer {
name: "conv1"
type: "Convolution"
bottom: "data" //[1]卷积层的输入blob为data
top: "conv1" //[2]卷积层的输出blob为conv1
param { //[3]卷积层的:权值学习速率倍乘因子,1表示,保持与全局参数一致
lr_mult: 1
}
param { //[4]卷积层的:偏置项的学习速率倍乘因子,是全局参数的2倍
lr_mult: 2
}
convolution_param { //[5]卷积层的计算参数
num_output: 20 //[1]输出feature map的数目为20,对应的也就是卷积核的数量
kernel_size: 5 //[2]卷积核的尺寸为:5*5
stride: 1 //[3]卷积核在输入图片上滑动的步长为:1
weight_filler { //[6]指定权值的初始化方案为:xavier
type: "xavier"
}
bias_filler { //[7]偏执项的初始化方案为:constant,默认为0
type: "constant"
}
}
}
/***********************************************************************************************
*模块4:
* 1--第一个池化层---pool1
* 2--定义一个下采样层(池化层),这个池化层的输入blob为conv1,输出blob为pool1
* 3--输出图片的大小===12*12
***********************************************************************************************/
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param { //[1]池化层(下采样)的参数
pool: MAX //[1]目前提供了三种池化的方法:最大值池化,均值池化,随机池化
// 很明显,该池化层使用了最大值池化MAX
kernel_size: 2 //[2]指定池化窗口的宽度和高度:2*2
stride: 2 //[3]指定池化窗口在输入数据上滑动的步长为:2
}
}
/***********************************************************************************************
*模块5:
* 1--第二个卷积层:conv2
* 2--该卷积层的输入blob为pool1,输出blob为conv2
* 3--注意:该卷积层输出的feature map(特征图的数量)为:50
* 4--输出图片的大小为:(12-2*0-5)/1+1=======8*8
***********************************************************************************************/
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
/***********************************************************************************************
*模块6:
* 1--第二个池化层:pool2
* 2--该池化层的输入blob为conv2,输出blob为pool2
***********************************************************************************************/
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
/***********************************************************************************************
*模块7:
* 1--第一个全连接层
* 2--该层的输入blob为:pool2,输出blob为iP1
* 3--注意:全连接层的的输出节点数(num_output==500)可以理解为滤波器的个数(滤波算子的个数),对应的也
* 就是输出特征图的个数
***********************************************************************************************/
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param { //[1]全连接层的参数:
num_output: 500 //[1]该层的输出元素的个数为:500
weight_filler { //[2]指定全连接层的初始化方案:xavier
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
/***********************************************************************************************
*模块8:
* 1--新的非线性层(激活函数)(规整化线性单元),此激活层采用的激活函数为:RELU
* 2--该激活层的输入blob为iP1,输出blob也为iP1
* 3--该(规整化线性单元)激活层的作用为:对全连接层的每一个输出数据进行判断,当x>0时,RELU的输出为x,
* 根据X的大小,说明这个单元的激活程度(兴奋程度);如果x<=0,则这个信号(特征图)被完全抑制
***********************************************************************************************/
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
/***********************************************************************************************
*模块9:
* 1--第二个全连接层InnerProduct
* 2--该层的输入blob为iP1,输出blob为ip2
***********************************************************************************************/
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param { //[1]全连接层的计算参数
num_output: 10 //[1]该层的输出为10个特征,对应0--9这10类数字
weight_filler { //[2]该层在网络初始化的初始化方案为:xavier
type: "xavier"
}
bias_filler { //[3]给该层添加偏置项,偏置项网络的初始化方案为:constant
type: "constant"
}
}
}
/***********************************************************************************************
*模块10:
* 1--Accuracy---分类准确率层
* 2--Accuracy层的作用:该层用来计算网络输出相对于目标值的准确率
* 3--该层的输入blob为iP2和label,输出blob为accuracy
* 4--注意:记住该层只在Test(测试)阶段有效,并且,它并不是一个Loss层,所以这次没有BP操作
***********************************************************************************************/
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
/***********************************************************************************************
*模块11:
* 1--Loss层,损失层
* 2--层类型:SoftnaxWithLoss---softmax损失层一般用于计算[多分类问题]的损失,在概念上等同于softmax
* 层后面跟一个多变量的logistic回归损失层,但能提供更稳定的梯度
***********************************************************************************************/
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}