DeepLearning--Part3--Chapter16:Representation Learning(1) categories:

-Chapter 16: Representation Learning

什么是好的Representation?有很多种可能的答案,这也是一个在以后的研究中还需要进行探索的问题。在本书中,我们给Representation下的定义则是Representation Learning能够使加下来的Learning task变得更加的简单。In an unsupervised learning setting, this could mean that the joint distribution of the different elements of the representation (e.g., elements of the representation vector h) is one that is easy to model (e.g., in the extreme, these elements are marginally independent of each other).但这并不够: 一个丢弃的所有信息的Representation(例如给定一个inputx,使Representation h=0)很容易建模,但是这对模型无用。因此,我们需要我们学习到的Representation既能够保留住信息的(至少能够保留住在对supervised阶段有益的信息),并且能够使得其他模型能够简单高效的从这些Representation中获取到对其有用,感兴趣的信息。

在Chapter 1中,我们介绍了Representation的概念,其中有一个idea是一些Representations会比其他的要好一些(例如给图片中的目标或者语音中的音素分类)。正如Chapter 1中讨论的,表明通过优化原始数据映射到Representation的方程的这种系统性的方法,要比handcrafting要好。基于这个动机,Section 6.7讨论了如何学习到输入数据的features,学习到input的features也是现在的前向深度神经网络的一个“副作用”(Chapter 6),特别是对于supervised Learning,通过匹配的(input,target)组合,能够直接获取到提升当前task performance的Representation。

本书的作者认为以后研究以及工业应用会主要集中在unsupervised learning of representation。

那么,我们如何从无标签或者少数有标签的数据中挖掘出信息呢?单纯的监督算法在少量的有标签数据上学习容易造成overfit。但另一方面, 人类(或者其他动物)却能够从少量的例子(有标签数据)中学习。 这在于他们先前获取到了足够的知识, 或者依靠直觉, 以及之前的学习经验(这个更符合人类)。 我们能够从无标签数据中发现好的Representation嘛(first four section in this Chapter)? 我们能把无标签数据和有标签数据结合起来吗(semi-supervised Section 16.3)? 如何将相同的Representation应用在多个任务中(multi-task Section 7.12)。 What
if we have “training tasks” (on which enough labeled examples are available) as well as “test tasks” (not known at the time of learning the representation, and for which only very few labeled examples will be provided)? 如果test task相似, 但是train task不相似(transfer learning, domain adaptation Section 16.2), 又该如何呢?

16.1 : Greedy Layerwise Unsupervised Pre-Training

无监督学习在深度神经网络的复兴中扮演了一个很重要的历史角色, 它使得训练深度监督网络成为可能。 我们把这类流程成为unsupervised pre-training(无监督预训练), 或者更确切的说, 贪心逐层无监督预训练, 这是这个Section的主要讨论内容。

一开始深度监督网络的成功秘诀依赖于这部分提及到的一些单层的Representation Learning算法: 比如Autoencoder, RBM。 每一层都通过无监督算法进行预训练, 将上一层的输出作为输入的新Representation, 其概率分布是相似的。

基于无监督训练的贪心逐层训练标准很好地克服了训练深度监督网络的困难, 这种方法可以追溯到Neocognitron(Fukushima, 1975), 贪心逐层训练被发现可以找到训练深度监督网络的好的初始点, 在学术上, 运用这种策略打破了SVM算法的benchmark。

被称为逐层是因为训练时一次只会训练一层, 训练第k层时,前面所有层的Weights会保持不变。 被称为无监督是因为每一层都是使用无监督Representation算法进行训练。 被称为贪心是因为不同层的training objective是不一样的,不同于global training objective,而global training objective会造成局部最优。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
深度高分辨率表示学习是一种用于视觉识别的技术,旨在从图像中学习到更高质量和更具表达力的特征表示。在传统的视觉识别任务中,如图像分类、目标检测和语义分割,传统的特征表示方法通常提取低级或中级特征,这些特征可能无法有效地捕捉到图像的复杂信息。而深度高分辨率表示学习通过多层神经网络的结构和大规模训练数据来学习更深层次、更富有语义的图像特征。 深度高分辨率表示学习方法通常包含以下几个关键步骤:首先,通过使用深度卷积神经网络(DCNN)架构来学习特征表示。DCNN是一种层次结构复杂、能够从原始像素数据中自动学习特征的神经网络。其次,利用大规模的标注数据进行训练,通过反向传播算法来更新网络的权重和偏置参数,从而最小化预测误差。最后,在训练过程中采用一些优化策略,如数据增强、正则化和优化器选择等,以提高网络的泛化能力和识别性能。 深度高分辨率表示学习在计算机视觉领域有着广泛的应用。一方面,它可以用于图像分类,通过学习到的高质量特征表示,可以在分类任务中获得更高的准确性和鲁棒性。另一方面,它也可以用于目标检测和语义分割任务,通过学习到的特征表示,可以更准确地定位和分割图像中的对象。此外,深度高分辨率表示学习还可以用于识别特定的物体、场景或人脸,从而应用于人脸识别、目标跟踪和智能安防等领域。 总之,深度高分辨率表示学习是一种能够有效提高视觉识别任务准确性和鲁棒性的技术。它通过学习到更深层次、更富有语义的图像特征表示,提供了更强大的图像分析和理解能力,为计算机视觉领域的各种应用提供了重要的支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值