OpenAI从GPT-4V到GPT-4o,再到GPT-4omini简介
一、引言
在人工智能领域,OpenAI的GPT系列模型一直是自然语言处理的标杆。随着技术的不断进步,OpenAI推出了多个版本的GPT模型,包括视觉增强的GPT-4V(GPT-4 with Vision)、优化版的GPT-4(GPT-4 Omni/Optimized)以及适用于资源受限环境的轻量级版本GPT-4omini(GPT-4 Omni/Optimized mini)。本文将详细介绍这些模型,并深入探讨GPT-4omini背后的技术栈。通过公式和代码示例,我们将全面了解这些模型的构建原理和实现细节。
二、GPT-4V:视觉增强的GPT-4
1. 概述
GPT-4V是GPT-4的视觉增强版本,它能够处理和生成图像信息,进一步扩展了GPT模型的应用范围。GPT-4V在语言理解的基础上加入了视觉处理能力,使其在多模态任务中表现出色。
2. 技术细节
GPT-4V结合了Transformer模型和卷积神经网络(CNN),能够同时处理文本和图像数据。模型的架构如下图所示:
import torch
import torch.nn as nn
import torch.nn.functional as F
class VisionEncoder(nn.Module):
def __init__(self):
super(VisionEncoder, self).__init__()
self.conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
x = self.pool(F.relu(self.conv(x)))
return x
class GPT4V(nn.Module):
def __init__(self):
super(GPT4V, self).__init__()
self.vision_encoder = VisionEncoder()
self.transformer = nn.Transformer(d_model=512, nhead=8, num_encoder_layers=6)
def forward(self, image, text):
vision_features = self