领域自适应(Domain Adaptation, DA)详解
引言
在机器学习和深度学习的广泛应用中,一个核心挑战在于模型往往在一个特定数据集(源领域)上训练后,难以直接应用于另一个不同但相关的数据集(目标领域),这主要是由于两个领域之间的数据分布差异所致。例如,在图像识别中,模型可能在白天的图像上训练,但在夜间图像上表现不佳。为了应对这一挑战,研究者们提出了领域自适应(Domain Adaptation, DA)的方法。领域自适应作为迁移学习的一个重要分支,旨在通过减小源领域和目标领域之间的分布差异,提升模型在目标领域上的性能。
- 传送门链接: 深度解析迁移学习(Transfer Learning)
什么是领域自适应
领域自适应是一种技术框架,旨在解决源领域和目标领域之间数据分布不一致的问题,同时假设这两个领域共享相同的特征空间和标签空间。其核心在于通过一系列技术手段,使模型能够学习到一种跨领域的通用表示,从而有效地将在源领域学到的知识迁移到目标领域。
源领域与目标领域
- 源领域:拥有丰富标注数据的领域,是模型训练的