SE(Squeeze-and-Excitation)架构详解
在深度学习,特别是计算机视觉领域,卷积神经网络(CNN)的发展日新月异。为了进一步提升CNN的特征提取能力和模型性能,研究者们不断探索新的网络架构和组件。其中,Squeeze-and-Excitation(SE)架构作为一种创新的特征重标定机制,自提出以来便受到了广泛的关注和应用。本文将详细解析SE架构的工作原理、实现方式、优势及其在不同网络架构中的应用。
SE架构的提出背景
在传统的CNN中,卷积层通过卷积核在输入特征图上滑动,提取出局部特征,并通过堆叠多个卷积层来构建深层次的特征表示。然而,这种处理方式往往忽略了不同通道特征之间的差异性,即每个通道的特征图对于最终任务的重要性可能是不同的。为了解决这个问题,SE架构被提出,它通过对通道特征进行显式地建模和重标定,来提升模型对有用特征的敏感度,并抑制无关特征。
SE架构的工作原理
SE架构的核心思想是通过Squeeze和Excitation两个步骤,对卷积层的输出特征图进行动态调整。
Squeeze(压缩)
在Squeeze步骤中,SE架构采用全局平均池化(Global Average Pooling)来压缩每个通道的特征图。具体来说,它将每个通道的特征图在空间维度(高度和宽度)上进行平均,得到一个表示该通道全局信息的标量。这个标量可以看作是通道描述符,它包含了该通道特征图的全局信息,但不包含空间位置信息。这一步骤的数学表达为:
z c = 1 H × W ∑ i = 1 H ∑ j = 1 W x c , i , j z_c = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} x_{c, i, j} zc=H×W