摘要: 本文描述硕士学位论文的几种目录结构, 特别针对机器学习方向.
1. 基础版
XX算法及其在YY中的应用
针对情况: 只有一篇小论文支撑.
第 1 章: 引言 ( > 5页)
1.1 背景及意义 (应用背景、研究意义, 2 页)
1.2 研究进展及趋势 (算法方面, 2 页)
1.3 论文结构 (1 页)
第 2 章: 相关工作 ( > 8页)
2.1 问题描述 (用文字描述, 尽量把符号放到 3.1 中解释, 便于把自己的工作撑起来, 1 页)
2.2 常见算法 (3 个以上, 每个 2 页, 用一个表格总结, 7 页)
2.3 本章小结 (0.5 页)
第 3 章: 本文算法 ( > 15 页)
3.1 算法基础 (含符号表, 3 页)
3.2 算法描述 (流程图、伪代码及其文字分析, 4 页)
3.3 算法分析 (时间、空间复杂度分析, 收敛性分析, 3 页)
3.4 运行实例 (running example, 用一个小例子把程序运行过程说清楚, 3 页)
3.5 方法对比 (与其它流行方法对比, 如时间、空间复杂度对比, 方法的思想对比等, 2 页)
3.6 本章小结 (0.5 页)
第 4 章: 实验 ( > 15 页)
4.1 数据采集与整理 (包含一些通用数据集, 以及本应用所针对的专用数据集, 3 页)
4.2 系统设计与实现 (系统框图, 系统界面展示, 5 页)
4.3 效率分析 (包括与其它方法的对比, 2 页)
4.4 效果分析 (精度等评价指标, 5 页)
4.5 应用情况分析 (与题目里面的应用相对应, 2 页)
4.6 本章小结 (0.5 页)
第 5 章: 总结与展望 (4 页)
5.1 遇到的问题与解决方案 (自己做的傻事列出来, 2 页)
5.2 总结 (1 页)
5.3 进一步工作 (1 页)
2. 提升版
XXX 算法研究
针对情况: 有 2 篇较为独立的小论文支撑.
其实你阅读了比较多的文献, 已经有较强的把握能力, 不是太需要看本贴了.
第 1, 2 章与基础版相同.
第 3 章: 本文算法 1 ( > 15 页)
3.1 算法基础 (含符号表, 2 页)
3.2 算法描述 (流程图、伪代码及其文字分析, 4 页)
3.3 算法分析 (时间、空间复杂度分析, 收敛性分析, 3 页)
3.4 运行实例 (running example, 用一个小例子把程序运行过程说清楚, 3 页)
3.5 方法对比 (与其它流行方法对比, 如时间、空间复杂度对比, 方法的思想对比等, 2 页)
3.6 实验 (与其它流行方法比效果, 可能有两三张图表, 3 页)
3.7 本章小结 (0.5 页)
第 4 章: 本文算法 2 ( > 15 页)
与第 3 章节奏相同
第 5 章与基础版相同.
3. 高阶版
XXX 算法研究
针对情况: 有 2 篇针对同一问题的小论文支撑.
第 1, 2 章与基础版相同.
第 3 章: 算法基础 ( > 8 页)
3.1 基本概念 (含符号表, 2 页)
3.2 问题定义 (输入、输出、优化目标等, 4 页)
3.3 问题分析 (含主要挑战等, 2 页)
3.4 本章小结 (0.5 页)
第 4 章: 本文算法 ( > 14 页)
4.1 算法 1 描述及分析 (7 页)
4.2 算法 2 描述及分析 (7 页)
4.3 小结 (0.5 页)
第 5 章: 实验 (> 10 页)
5.1 实验设置
5.2 效率对比
5.3 效果对比
5.4 消融实验
5.5 小结
第 6 章与基础版第 5 章相同.