机器学习强基计划6-2:详细推导马尔科夫随机场(MRF)及其应用(附例题)

本文详细介绍了马尔科夫随机场(MRF)的概念,从无向概率图出发,探讨MRF在图像分割、社交网络等领域的应用。通过Hammersley-Clifford定理阐述MRF的概率分布,并讨论了全局马尔科夫性和局部马尔科夫性。同时,通过例题分析解释了如何求解MRF的联合概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 写在前面

机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编写、测试与文章配套的各个经典算法,不依赖于现有库,可以大大加深对算法的理解。

🚀详情:机器学习强基计划(附几十种经典模型源码)


机器学习强基计划5-1:概率图开篇,机器学习中的图论总结(附思维导图)中我们介绍了什么是概率图模型,而概率图模型主要分为

  • 有向无环概率图——经典的有向概率图为贝叶斯网络
  • 无向概率图——经典的无向概率图为马尔科夫随机场

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Winter`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值