OKVIS的阅读笔记

这篇博客主要介绍了如何推导IMU因子中角度误差的雅克比矩阵,并通过编写测试代码验证推导的正确性。作者遇到虽然误差能减小,但梯度检测未通过的问题。
摘要由CSDN通过智能技术生成

这次主要介绍的是IMU因子中构造的角度误差的雅克比矩阵的推导

由于实在看不懂OKVIS中IMU因子构造的角度误差的雅克比矩阵,索性自己推一遍,并且编写程序检查是否自己的推导是否正确,只是测试了误差可以下降,但是梯度检测没有通过,不知道为啥

IMU因子构造的角度误差

误差的定义如下所示
E ( θ ) = 2 ∗ ( Δ q ∗ q j − 1 ∗ q i ) . v e c ( ) E(\theta) = 2*(\Delta q*q_j^{-1} *q_i).vec() E(θ)=2(Δqqj1qi).vec()
注意,为了和OKVIS对角度的更新一致,下面的推导对角度施加的是左扰动,VINS-Momo施加的是右扰动,(Notice OKIVS对误差施加的是右扰动,对变量施加的是左扰动)

E x p ( δ ϕ ) Δ R R j − 1 R i = Δ R R j − 1 E x p ( − δ ϕ j ) R i E x p ( δ ϕ ) = Δ R R j − 1 E x p ( − δ ϕ j ) ∗ ( Δ R R j − 1 ) − 1 E x p ( δ ϕ ) = E x p ( − Δ R R j − 1 δ ϕ j ) δ ϕ = − Δ R R j − 1 δ ϕ j Exp(\delta \phi)\Delta RR_j^{-1}R_i = \Delta RR_j^{-1}Exp(-\delta \phi_j)R_i \\ Exp(\delta \phi) = \Delta RR_j^{-1}Exp(-\delta \phi_j)* (\Delta RR_j^{-1})^{-1} \\ Exp(\delta \phi) = Exp(-\Delta RR_j^{-1}\delta \phi_j)\\ \delta \phi = -\Delta RR_j^{-1}\delta \phi_j Exp(δϕ)ΔRRj1Ri=ΔRRj1Exp(δϕj)RiExp(δϕ)=ΔRRj1Exp(δϕj)(ΔRRj1)1Exp(δϕ)=Exp(ΔRRj1δϕj)δϕ=ΔRRj1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值