OpenCV学习--仿射变换(affine)

图像的基本几何变换有-- 平移,旋转,尺度,仿射;仿射变换可以理解为平移旋转尺度的组合效果。下面给出数学上的定义

Eqn:eqngein

Eqn:eqnxy1是输入图像的点,Eqn:eqnxy2时输出图像的点

A是2x2旋转矩阵, B是平移向量

(一)平移的实现

Eqn:eqnaff1

二)旋转的实现

Eqn:eqnaff2

三)尺度的实现

Eqn:eqnaff3

上面的实现可以看出,使用仿射变换是需要求解6个参数,旋转矩阵4个,平移向量2个。这也是我们在使用OpenCV的warpAffine函数时需要输入3对坐标了

下面是测试程序

#include "stdafx.h"
#include <opencv2/opencv.hpp>
#include <iostream>
#include "affine.h"

using namespace std;
using namespace cv;

static char* source_wnd = "Source Image";
static char* warp_wnd = "Warp";
static char* warp_rotate_wnd = "Warp_rotate_wnd";
void affine_test()
{
	Point2f srcTri[3];
	Point2f dstTri[3];

	Mat rot_mat(2, 3, CV_32FC1);
	Mat warp_mat(2, 3, CV_32FC1);

	Mat src, warp_dst, warp_rotate_dst;
	//加载图像
	src = imread("dog.jpg");

	warp_dst = Mat::zeros(src.size(), src.type());
	//设置源图像和目标图像上的是三个点一家算仿射变换
	srcTri[0] = Point2f(0,0);
	srcTri[1] = Point2f(src.cols-1, 0);
	srcTri[2] = Point2f(0, src.rows-1);

// 	dstTri[0] = Point2f(src.cols*0, src.rows*0.33);
// 	dstTri[1] = Point2f(src.cols*0.85, src.rows*0.25);
// 	dstTri[2] = Point2f(src.cols*0.15, src.rows*0.7);
	dstTri[0] = Point2f(src.cols*0.25, src.rows*0.25);
	dstTri[1] = Point2f(src.cols*0.75, src.rows*0.25);
	dstTri[2] = Point2f(src.cols*0.25, src.rows*0.75);

	//求得仿射变换,一个2x3的矩阵
	warp_mat = getAffineTransform(srcTri, dstTri);
	//对源图像使用上面的仿射变换
	warpAffine(src, warp_dst, warp_mat, warp_dst.size());
	//计算饶图像中点顺时针旋转50,缩放因子为0.6的矩阵
	Point center(src.cols/2, src.rows/2);
	double angle = 50.0;
	double scale = 0.6;
	//求旋转矩阵
	rot_mat = getRotationMatrix2D(center, angle, scale);
	warpAffine(warp_dst, warp_rotate_dst, rot_mat, warp_dst.size());
	imshow(warp_wnd, warp_dst);
	imshow(source_wnd, src);
	imshow(warp_rotate_wnd, warp_rotate_dst);
}


<think>嗯,用户问的是用OpenCV C++实现条码图像的仿射变换。首先,我得回忆一下仿射变换的基本概念。仿射变换包括平移、旋转、缩放和剪切这些线性变换,加上平移变换。它可以用一个2x3的矩阵来表示,对吧? 接下来,我需要考虑在OpenCV中如何实现这个。OpenCV有相关的函数,比如getAffineTransform和warpAffine。这两个函数应该是关键。getAffineTransform用来生成仿射矩阵,需要三个点对的坐标。而warpAffine则应用这个矩阵到图像上。 不过用户提到的是条码图像,可能需要注意保持条码的可读性。条码通常对变形比较敏感,所以在应用仿射变换时要小心,不能破坏条码的结构,否则可能无法被扫描识别。这时候可能需要确保变换后的图像仍然保持条码的直线结构,或者至少变换后的图像不会导致条码信息丢失。 那具体步骤应该是怎样的呢?首先读取图像,可能需要灰度化,因为条码处理通常用灰度图像。然后定义三个原始点和目标点,比如选三个角点,然后计算变换矩阵。接着应用warpAffine进行变换。 但用户可能需要更具体的代码示例。比如,如何选取点?通常可能需要手动指定或者用特征点检测。但如果是手动的话,用户可能需要自己定义三个点。比如,原始图像的三个顶点,变换后的位置。然后生成变换矩阵,应用变换。 另外要考虑的是,处理后的图像可能会有黑边,这时候可能需要使用BORDER_CONSTANT和borderValue参数来填充背景颜色,比如白色,适合条码背景。 还有,输入图像的类型是否正确?比如,如果是彩色图像,是否需要先转换成三通道的?或者保持原样?需要确保输入和输出图像类型一致。 然后,测试一下变换后的条码是否还能被识别。可能需要提醒用户注意变换的程度,不要过度旋转或剪切,否则条码可能失效。 可能的问题点:用户可能不知道如何选择三个点对,或者如何确定变换后的点位置。这时候需要给出示例,比如选取左上、右上、左下三个点,变换后的位置如何计算。 另外,仿射变换和透视变换的区别是什么?用户可能会混淆。仿射变换保持平行性,而透视变换不保持,但这里用户明确要求仿射,所以用getAffineTransform是正确的。 总结步骤:读取图像,定义三个原点和目标点,计算变换矩阵,应用变换,显示或保存结果。需要注意条码的特殊性,保持可读性。</think>好的,我们将分步骤讲解如何使用OpenCV C++实现条码图像的仿射变换仿射变换可校正条码的倾斜、旋转等几何变形,以下是具体实现方法: --- ### **1. 仿射变换原理** 仿射变换的数学表示为: $$ \begin{bmatrix} x' \\ y' \end{bmatrix} = M \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} $$ 其中$M$是$2 \times 3$变换矩阵,包含平移、旋转、缩放和剪切参数。 --- ### **2. 核心OpenCV函数** - `cv::getAffineTransform()`:通过3组点对计算变换矩阵 - `cv::warpAffine()`:应用变换矩阵到图像 --- ### **3. 完整代码实现** ```cpp #include <opencv2/opencv.hpp> int main() { // 1. 读取图像(以灰度模式处理条码更高效) cv::Mat src = cv::imread("barcode.jpg", cv::IMREAD_GRAYSCALE); // 2. 定义3组对应点(原始点->目标点) cv::Point2f srcTri[3]; cv::Point2f dstTri[3]; // 原始三角形顶点(示例坐标,需根据实际情况调整) srcTri[0] = cv::Point2f(50, 50); // 左上角 srcTri[1] = cv::Point2f(200, 50); // 右上角 srcTri[2] = cv::Point2f(50, 150); // 左下角 // 目标三角形顶点(校正后的位置) dstTri[0] = cv::Point2f(0, 0); // 平移后的左上角 dstTri[1] = cv::Point2f(300, 0); // X方向拉伸 dstTri[2] = cv::Point2f(0, 200); // Y方向拉伸 // 3. 计算仿射变换矩阵 cv::Mat warpMat = cv::getAffineTransform(srcTri, dstTri); // 4. 应用仿射变换 cv::Mat dst; cv::warpAffine( src, dst, warpMat, dst.size(), cv::INTER_LINEAR, // 插值方法 cv::BORDER_CONSTANT, // 边界填充 cv::Scalar(255, 255, 255) // 填充白色背景(适合条码) ); // 5. 显示结果 cv::imshow("Source", src); cv::imshow("Affine Transform", dst); cv::waitKey(0); return 0; } ``` --- ### **4. 关键参数说明** | 参数/方法 | 作用说明 | |--------------------------|--------------------------------------------------------------------------| | `cv::INTER_LINEAR` | 双线性插值,在图像质量与速度间取得平衡 | | `cv::BORDER_CONSTANT` | 用白色填充空白区域,避免产生黑色边界影响条码识别 | | 点对选择策略 | 建议通过特征检测(如SIFT)自动获取点对,对倾斜条码效果更好 | --- ### **5. 条码处理特别注意事项** 1. **保持纵横比**:避免过度拉伸导致条码宽度比例失真 2. **二值化预处理**:建议在变换前使用`cv::threshold()`进行二值化 3. **分辨率保护**:变换后分辨率不应低于条码扫描仪的最低要求(通常≥300dpi) 实际应用时建议结合轮廓检测自动获取变换点,以下为改进方向伪代码: ```cpp // 伪代码:自动检测条码区域 cv::findContours(...); cv::minAreaRect(...); // 获取最小外接矩形 // 根据矩形的四个角点计算仿射变换 ``` 如果需要处理透视变形(如俯拍角度),应改用`cv::getPerspectiveTransform()`实现透视变换。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值