[分布式控制] (2) 经典一阶系统的一致性问题

[分布式控制] (2) 经典一阶系统的一致性问题

对于多智能体系统,最简单的是研究其的一致性问题,然后才是其衍生的编队问题,有意思的是学者们在这里对控制输入的提法常常是“consensus protocol”(一致性协议)而不是“control scheme”(控制算法)。Olfati-Saber教授是较早做多体一致性且很成功的人,现在已经是个大佬,他的文章十分经典;另外还有位华人大佬Wei Ren教授的文章也是不错的。
建议首先学习图论的预备知识:
[分布式控制] (1) 图论基础

1 前言

经典一阶系统的一致性稳定是最基础最基础的问题,早期的文献在叙述和表达上读起来有点费劲,这里笔者根据自己的相关理解,写出一个比较容易理解的叙述。

2 经典一阶系统的一致性问题

考虑简单一阶级系统:
x ˙ i = u i {{\dot{x}}_{i}}={{u}_{i}} x˙i=ui考虑智能体在的图存在生成树,一致性协议为:
u i = − ∑ j = 1 n l i j x j = − ∑ j ∈ N i n l i j ( x i − x j ) {{u}_{i}}=-\sum\limits_{j=1}^{n}{{{l}_{ij}}{{x}_{j}}}=-\sum\limits_{j\in {{N}_{i}}}^{n}{{{l}_{ij}}\left( {{x}_{i}}-{{x}_{j}} \right)} ui=j=1nlijxj=jNinlij(xixj)实际上还可以加一个系数 k > 0 k>0 k>0
u i = − k ∑ j ∈ N i n l i j ( x i − x j ) {{u}_{i}}=-k\sum\limits_{j\in {{N}_{i}}}^{n}{{{l}_{ij}}\left( {{x}_{i}}-{{x}_{j}} \right)} ui=kjNinlij(xixj)下面证明稳定性,考虑如下Lyapunov函数:
V 1 = 1 2 x T x {{V}_{1}}=\frac{1}{2}{{\mathbf{x}}^{T}}\mathbf{x} V1=21xTx求导
V ˙ 1 = x T x ˙ = − k x T L x \begin{aligned} & {{{\dot{V}}}_{1}}={{\mathbf{x}}^{T}}\mathbf{\dot{x}} \\ & =-k{{\mathbf{x}}^{T}}L\mathbf{x} \end{aligned} V˙1=xTx˙=kxTLx可知Laplacian矩阵 L {L} L是半正定的,那么必有 V ˙ 1 = − k x T L x ≤ 0 {{\dot{V}}_{1}}=-k{{\mathbf{x}}^{T}}L\mathbf{x}\le 0 V˙1=kxTLx0
下面讨论 V ˙ 1 = 0 {{\dot{V}}_{1}}=0 V˙1=0的情况,由于图存在生成树,那么有:
α L 1 n = 0 n \alpha L{{\mathbf{1}}_{n}}={{\mathbf{0}}_{n}} αL1n=0n此时 x = α 1 n \mathbf{x}=\alpha {{\mathbf{1}}_{n}} x=α1n,即状态量达到一致,为一个和 L L L x ( 0 ) \mathbf{x}\left( 0 \right) x(0)有关的未知定值。
因此,从这个Lyapunov函数 V 1 = 1 2 x T x {{V}_{1}}=\frac{1}{2}{{\mathbf{x}}^{T}}\mathbf{x} V1=21xTx可以得到结论是在上述一致性协议下,当状态量不一致时, V 1 {{V}_{1}} V1会一直减少,直到 V ˙ 1 = 0 {{\dot{V}}_{1}}=0 V˙1=0,此时 x = α 1 n \mathbf{x}=\alpha {{\mathbf{1}}_{n}} x=α1n,有 ∣ x i − x j ∣ → 0 \left| {{x}_{i}}-{{x}_{j}} \right|\to 0 xixj0,但是此时 V 1 ≠ 0 {{V}_{1}}\ne 0 V1=0

2 关于均值的推论

这是一个经典的结论,如果图是一个平衡图,那么系统最终会稳定到初始的均值状态,考虑均值:
x ˉ = 1 n ∑ i = 1 n x i \bar{x}=\frac{1}{n}\sum\limits_{i=1}^{n}{{{x}_{i}}} xˉ=n1i=1nxi求导:
x ˉ ˙ = 1 n ∑ i = 1 n x ˙ i = k n ∑ i = 1 n ∑ j ∈ N i n l i j ( x i − x j ) = 0 \begin{aligned} & \dot{\bar{x}}=\frac{1}{n}\sum\limits_{i=1}^{n}{{{{\dot{x}}}_{i}}} \\ & =\frac{k}{n}\sum\limits_{i=1}^{n}{\sum\limits_{j\in {{N}_{i}}}^{n}{{{l}_{ij}}\left( {{x}_{i}}-{{x}_{j}} \right)}} \\ & =0 \end{aligned} xˉ˙=n1i=1nx˙i=nki=1njNinlij(xixj)=0说明均值不变化,即 x ˉ ( t ) = x ˉ ( 0 ) \bar{x}\left( t \right)=\bar{x}\left( 0 \right) xˉ(t)=xˉ(0)
下面考虑如下Lyapunov函数:
V = 1 2 x T ( I n − 1 n 1 T 1 ) x = 1 2 ∑ i = 1 n ( x i − x ˉ ) 2 \begin{aligned} & V=\frac{1}{2}{{\mathbf{x}}^{T}}\left( {{I}_{n}}-\frac{1}{n}{{\mathbf{1}}^{T}}\mathbf{1} \right)\mathbf{x} \\ & =\frac{1}{2}\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\bar{x} \right)}^{2}}} \end{aligned} V=21xT(Inn11T1)x=21i=1n(xixˉ)2求导
V ˙ = ∑ i = 1 n ( x ˙ i − x ˉ ˙ ) ( x i − x ˉ ) = ∑ i = 1 n ( x i − x ˉ ) x ˙ i = − k ∑ i = 1 n ( x i − x ˉ ) ∑ j = 1 n l i j x j = − k ∑ i = 1 n x i ∑ j = 1 n l i j x j − k x ˉ ∑ i = 1 n ∑ j = 1 n l i j x j = − k x T L x \begin{aligned} & \dot{V}=\sum\limits_{i=1}^{n}{\left( {{{\dot{x}}}_{i}}-\dot{\bar{x}} \right)\left( {{x}_{i}}-\bar{x} \right)} \\ & =\sum\limits_{i=1}^{n}{\left( {{x}_{i}}-\bar{x} \right){{{\dot{x}}}_{i}}} \\ & =-k\sum\limits_{i=1}^{n}{\left( {{x}_{i}}-\bar{x} \right)\sum\limits_{j=1}^{n}{{{l}_{ij}}{{x}_{j}}}} \\ & =-k\sum\limits_{i=1}^{n}{{{x}_{i}}\sum\limits_{j=1}^{n}{{{l}_{ij}}{{x}_{j}}}}-k\bar{x}\sum\limits_{i=1}^{n}{\sum\limits_{j=1}^{n}{{{l}_{ij}}{{x}_{j}}}} \\ & =-k{{\mathbf{x}}^{T}}L\mathbf{x} \end{aligned} V˙=i=1n(x˙ixˉ˙)(xixˉ)=i=1n(xixˉ)x˙i=ki=1n(xixˉ)j=1nlijxj=ki=1nxij=1nlijxjkxˉi=1nj=1nlijxj=kxTLx有如下关系:
0 ≤ ρ 2 ( L ) ( I n − 1 n 1 n 1 n T ) ≤ L 0\le {{\rho }_{2}}\left( L \right)\left( {{I}_{n}}-\frac{1}{n}{{\mathbf{1}}_{n}}\mathbf{1}_{n}^{T} \right)\le L 0ρ2(L)(Inn11n1nT)L ρ 2 ( L ) {{\rho }_{2}}\left( L \right) ρ2(L) L L L最小非零正特征值,这里笔者偷个懒,关于这个不等式详细证明参考下面两篇文章:
X. Yi, J. Wei, D. V. Dimarogonas, and K. H. Johansson, “Formation control for multi-agent systems with connectivity preservation and event-triggered controllers,” in Proc. 20th World Congr., IFAC, Toulouse, France, Jul. 2017, pp. 9367–9373.
M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multi-Agent Networks. Princeton, NJ, USA: Princeton Univ. Press, 2010.

那么
V ˙ = − k x T L x ≤ − ρ 2 ( L ) k x T ( I n − 1 n 1 n 1 n T ) x \dot{V}=-k{{\mathbf{x}}^{T}}L\mathbf{x}\le -{{\rho }_{2}}\left( L \right)k{{\mathbf{x}}^{T}}\left( {{I}_{n}}-\frac{1}{n}{{\mathbf{1}}_{n}}\mathbf{1}_{n}^{T} \right)\mathbf{x} V˙=kxTLxρ2(L)kxT(Inn11n1nT)x即有
x i → x ˉ = x ˉ ( 0 ) {{x}_{i}}\to \bar{x}=\bar{x}\left( 0 \right) xixˉ=xˉ(0)

  • 9
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
分布式系统一致性协议是用于确保在分布式系统中的多个节点之间达成一致状态的协议。在分布式系统中,由于网络延迟、节点故障等原因,节点之间的数据可能会出现不一致的情况。一致性协议的目标是通过协调节点之间的操作,使得系统在面对各种故障和并发操作时能够保持一致性。 常见的分布式系统一致性协议包括: 1. 两阶段提交(Two-Phase Commit,2PC):2PC是一种基于中心协调者的协议,它通过两个阶段的消息交换来实现一致性。第一阶段是准备阶段,协调者向参与者发送准备请求,并等待参与者的响应。第二阶段是提交阶段,协调者根据参与者的响应决定是否提交或中止事务。2PC的缺点是存在阻塞和单点故障问题。 2. 三阶段提交(Three-Phase Commit,3PC):3PC是对2PC的改进,引入了超时机制来解决阻塞问题。它将2PC的准备阶段拆分为canCommit和preCommit两个阶段,并引入超时机制来处理参与者和协调者的故障。 3. Paxos:Paxos是一种基于消息传递的一致性协议,用于解决分布式系统中的一致性问题。Paxos通过选举一个提议者和多个接受者来达成一致,它具有高度的容错性和可扩展性。 4. Raft:Raft是一种相对于Paxos更易理解和实现的一致性协议。Raft将一致性问题分解为领导选举、日志复制和安全性三个子问题,并通过选举一个领导者来协调节点之间的操作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值