[滑模控制器] (5) 基于分层滑模的吊车控制

[滑模控制] (5) 基于分层滑模的吊车控制

本博客需要一些现代控制理论中Lyapunov稳定性的一些理论知识。
您需要对滑模控制有一个初步的了解,可以参考:
[滑模控制] (1) 二阶系统的简单滑模控制器设计

1 前言

分层滑模主要适用的是欠驱动系统,即输入个数小于需要控制的状态数目,比如下面为例吊车,只有一个控制输入,但是需要同时控制吊车在轨道的位置和下摆的角度。笔者对于分层滑模的了解也不够深入,属于初学阶段,不过恰巧曾经简单学习过分层滑模且应用在了吊车上,因此在此将展示本人的控制器设计。
笔者这里学习的主要是王伟的一些中文文献,他在国内做欠驱动系统控制研究算是很早的。

2 吊车动力学模型

在这里插入图片描述
如上图所示一个桥式吊车,假设负载可以看做质点,在X-Y平面内运动,同事忽略台车与轨道之间的摩擦力以及绳子长度L的变化,则利用Euler-Lagrange方法可以得到其动力学模型(其实是抄后面参考文献的):
{ ( m + M ) x ¨ + m L ( θ ¨ cos ⁡ θ − θ ˙ 2 sin ⁡ θ ) = u x ¨ cos ⁡ θ + L θ ¨ + g sin ⁡ θ = 0 \left\{ \begin{matrix} \left( m+M \right)\ddot{x}+mL\left( \ddot{\theta }\cos \theta -{{{\dot{\theta }}}^{2}}\sin \theta \right)=u \\ \ddot{x}\cos \theta +L\ddot{\theta }+g\sin \theta =0 \\ \end{matrix} \right. {(m+M)x¨+mL(θ¨cosθθ˙2sinθ)=ux¨cosθ+Lθ¨+gsinθ=0其中 M M M表示台车质量, m m m表示负载质量, x x x表示台车水平位移, θ \theta θ表示吊绳摆角, L L L为绳长。
x 1 = x {{x}_{1}}=x x1=x x 2 = x ˙ {{x}_{2}}=\dot{x} x2=x˙ x 3 = θ {{x}_{3}}=\theta x3=θ x 4 = θ ˙ {{x}_{4}}=\dot{\theta } x4=θ˙分别为吊车系统中的台车水平移动距离,台车水平速度,吊绳摆角,吊绳摆角角速度,考虑外部干扰 d 1 ( t ) {{d}_{1}}\left( t \right) d1(t) d 2 ( t ) {{d}_{2}}\left( t \right) d2(t),即有:
{ x ˙ 1 = x 2 x ˙ 2 = g 1 ( X ) + b 1 ( X ) u + d 1 ( t ) x ˙ 3 = x 4 x ˙ 4 = g 2 ( X ) + b 2 ( X ) u + d 2 ( t ) \left\{ \begin{matrix} {{{\dot{x}}}_{1}}={{x}_{2}} \\ {{{\dot{x}}}_{2}}={{g}_{1}}\left( X \right)+{{b}_{1}}\left( X \right)u+{{d}_{1}}\left( t \right) \\ {{{\dot{x}}}_{3}}={{x}_{4}} \\ {{{\dot{x}}}_{4}}={{g}_{2}}\left( X \right)+{{b}_{2}}\left( X \right)u+{{d}_{2}}\left( t \right) \\ \end{matrix} \right. x˙1=x2x˙2=g1(X)+b1(X)u+d1(t)x˙3=x4x˙4=g2(X)+b2(X)u+d2(t)其中:
{ g 1 ( X ) = m L θ ˙ 2 sin ⁡ θ + m g sin ⁡ θ cos ⁡ θ M + m sin ⁡ 2 θ b 1 ( X ) = 1 M + m sin ⁡ 2 θ g 2 ( X ) = − ( m + M ) g sin ⁡ θ + m L θ ˙ 2 sin ⁡ θ cos ⁡ θ ( M + m sin ⁡ 2 θ ) L b 2 ( X ) = − cos ⁡ θ ( M + m sin ⁡ 2 θ ) L \left\{ \begin{matrix} {{g}_{1}}\left( X \right)=\frac{mL{{{\dot{\theta }}}^{2}}\sin \theta +mg\sin \theta \cos \theta }{M+m{{\sin }^{2}}\theta } \\ {{b}_{1}}\left( X \right)=\frac{1}{M+m{{\sin }^{2}}\theta } \\ {{g}_{2}}\left( X \right)=-\frac{\left( m+M \right)g\sin \theta +mL{{{\dot{\theta }}}^{2}}\sin \theta \cos \theta }{\left( M+m{{\sin }^{2}}\theta \right)L} \\ {{b}_{2}}\left( X \right)=-\frac{\cos \theta }{\left( M+m{{\sin }^{2}}\theta \right)L} \\ \end{matrix} \right. g1(X)=M+msin2θmLθ˙2sinθ+mgsinθcosθb1(X)=M+msin2θ1g2(X)=(M+msin2θ)L(m+M)gsinθ+mLθ˙2sinθcosθb2(X)=(M+msin2θ)Lcosθ

3 分层滑模控制器设计

易知 b 1 > 0 {{b}_{1}}>0 b1>0,设有 ∣ d 1 ( t ) ∣ ≤ σ 1 \left| {{d}_{1}}\left( t \right) \right|\le {{\sigma }_{1}} d1(t)σ1 ∣ d 2 ( t ) ∣ ≤ σ 2 \left| {{d}_{2}}\left( t \right) \right|\le {{\sigma }_{2}} d2(t)σ2 0 < σ 3 ≤ ∣ b 1 ∣ ≤ σ 4 0<{{\sigma }_{3}}\le \left| {{b}_{1}} \right|\le {{\sigma }_{4}} 0<σ3b1σ4 ∣ b 2 ∣ ≤ σ 5 \left| {{b}_{2}} \right|\le {{\sigma }_{5}} b2σ5
该四阶系统可以看做是2个二阶子系统耦合,首先考虑第一层滑模面:
{ s 1 = c 1 x 1 + x 2 c 1 > 0 s 2 = c 2 x 3 + x 4 c 2 > 0 \left\{ \begin{matrix} \begin{matrix} {{s}_{1}}={{c}_{1}}{{x}_{1}}+{{x}_{2}} & {{c}_{1}}>0 \\ \end{matrix} \\ \begin{matrix} {{s}_{2}}={{c}_{2}}{{x}_{3}}+{{x}_{4}} & {{c}_{2}}>0 \\ \end{matrix} \\ \end{matrix} \right. {s1=c1x1+x2c1>0s2=c2x3+x4c2>0易得:
{ s ˙ 1 = c 1 x 2 + g 1 ( X ) + b 1 ( X ) u + d 1 s ˙ 2 = c 2 x 4 + g 2 ( X ) + b 2 ( X ) u + d 2 \left\{ \begin{matrix} {{{\dot{s}}}_{1}}={{c}_{1}}{{x}_{2}}+{{g}_{1}}\left( X \right)+{{b}_{1}}\left( X \right)u+{{d}_{1}} \\ {{{\dot{s}}}_{2}}={{c}_{2}}{{x}_{4}}+{{g}_{2}}\left( X \right)+{{b}_{2}}\left( X \right)u+{{d}_{2}} \\ \end{matrix} \right. {s˙1=c1x2+g1(X)+b1(X)u+d1s˙2=c2x4+g2(X)+b2(X)u+d2在不考虑干扰的情况下,等效控制律为:
{ u e q 1 = c 1 x 2 + g 1 ( X ) b 1 ( X ) u e q 2 = c 2 x 4 + g 2 ( X ) b 2 ( X ) \left\{ \begin{matrix} {{u}_{eq1}}=\frac{{{c}_{1}}{{x}_{2}}+{{g}_{1}}\left( X \right)}{{{b}_{1}}\left( X \right)} \\ {{u}_{eq2}}=\frac{{{c}_{2}}{{x}_{4}}+{{g}_{2}}\left( X \right)}{{{b}_{2}}\left( X \right)} \\ \end{matrix} \right. {ueq1=b1(X)c1x2+g1(X)ueq2=b2(X)c2x4+g2(X)设计第二层滑模为:
s = α s 1 + β s 2 s=\alpha {{s}_{1}}+\beta {{s}_{2}} s=αs1+βs2整个系统只能有一个控制律,因此要考虑2个子系统的等效控制,总控制量为:
u = u e q 1 + u e q 2 + u s w u={{u}_{eq1}}+{{u}_{eq2}}+{{u}_{sw}} u=ueq1+ueq2+usw u s w {{u}_{sw}} usw为切换控制律。
考虑Lyapunov函数:
V = 1 2 s 2 V=\frac{1}{2}{{s}^{2}} V=21s2求导:
V ˙ = s s ˙ = s ( α s ˙ 1 + β s ˙ 2 ) = s ( α ( c 1 x 2 + g 1 + b 1 u + d 1 ) + β ( c 2 x 4 + g 2 + b 2 u + d 2 ) ) \begin{aligned} & \dot{V}=s\dot{s}=s\left( \alpha {{{\dot{s}}}_{1}}+\beta {{{\dot{s}}}_{2}} \right) \\ & \begin{matrix} {} \\ \end{matrix}=s\left( \alpha \left( {{c}_{1}}{{x}_{2}}+{{g}_{1}}+{{b}_{1}}u+{{d}_{1}} \right)+\beta \left( {{c}_{2}}{{x}_{4}}+{{g}_{2}}+{{b}_{2}}u+{{d}_{2}} \right) \right) \\ \end{aligned} V˙=ss˙=s(αs˙1+βs˙2)=s(α(c1x2+g1+b1u+d1)+β(c2x4+g2+b2u+d2))带入 u u u得:
V ˙ = s ( α b 1 u e q 2 + β b 2 u e q 1 + α d 1 + β d 2 + ( α b 1 + β b 2 ) u s w ) \dot{V}=s\left( \alpha {{b}_{1}}{{u}_{eq2}}+\beta {{b}_{2}}{{u}_{eq1}}+\alpha {{d}_{1}}+\beta {{d}_{2}}+\left( \alpha {{b}_{1}}+\beta {{b}_{2}} \right){{u}_{sw}} \right) V˙=s(αb1ueq2+βb2ueq1+αd1+βd2+(αb1+βb2)usw)设计切换控制律:
u s w = − α b 1 u e q 2 − β b 2 u e q 1 − ε s g n ( s 1 ) α b 1 + β b 2 − k s k > 0 \begin{matrix} {{u}_{sw}}=\frac{-\alpha {{b}_{1}}{{u}_{eq2}}-\beta {{b}_{2}}{{u}_{eq1}}-\varepsilon sgn \left( {{s}_{1}} \right)}{\alpha {{b}_{1}}+\beta {{b}_{2}}}-ks & k>0 \\ \end{matrix} usw=αb1+βb2αb1ueq2βb2ueq1εsgn(s1)ksk>0
将上式带入,得:
V ˙ = s ( − ε s g n ( s 1 ) − ( α b 1 + β b 2 ) k s + α d 1 + β d 2 ) = α s 1 ( α d 1 + β d 2 ) − α ε ∣ s 1 ∣ − β ε s 2 s g n ( s 1 ) + β s 2 ( α d 1 + β d 2 ) − ( α b 1 + β b 2 ) k s 2 ≤ α ∣ s 1 ∣ ( ∣ α d 1 + β d 2 ∣ − ε ) − s 2 β ( ε s g n ( s 1 ) − ( α d 1 + β d 2 ) ) − ( α b 1 + β b 2 ) k s 2 \begin{aligned} & \dot{V}=s\left( -\varepsilon sgn \left( {{s}_{1}} \right)-\left( \alpha {{b}_{1}}+\beta {{b}_{2}} \right)ks+\alpha {{d}_{1}}+\beta {{d}_{2}} \right) \\ & \begin{matrix} {} \\ \end{matrix}=\alpha {{s}_{1}}\left( \alpha {{d}_{1}}+\beta {{d}_{2}} \right)-\alpha \varepsilon \left| {{s}_{1}} \right| \\ & -\beta \varepsilon {{s}_{2}}sgn \left( {{s}_{1}} \right)+\beta {{s}_{2}}\left( \alpha {{d}_{1}}+\beta {{d}_{2}} \right)-\left( \alpha {{b}_{1}}+\beta {{b}_{2}} \right)k{{s}^{2}} \\ & \begin{matrix} {} \\ \end{matrix}\le \alpha \left| {{s}_{1}} \right|\left( \left| \alpha {{d}_{1}}+\beta {{d}_{2}} \right|-\varepsilon \right)-{{s}_{2}}\beta \left( \varepsilon sgn \left( {{s}_{1}} \right)-\left( \alpha {{d}_{1}}+\beta {{d}_{2}} \right) \right)-\left( \alpha {{b}_{1}}+\beta {{b}_{2}} \right)k{{s}^{2}} \\ \end{aligned} V˙=s(εsgn(s1)(αb1+βb2)ks+αd1+βd2)=αs1(αd1+βd2)αεs1βεs2sgn(s1)+βs2(αd1+βd2)(αb1+βb2)ks2αs1(αd1+βd2ε)s2β(εsgn(s1)(αd1+βd2))(αb1+βb2)ks2显然,当有下式时:
{ ε ≥ α σ 1 + β 0 σ 2 β = { β 0 s 1 s 2 ≥ 0 − β 0 s 1 s 2 < 0 β 0 > 0 α > β 0 σ 5 σ 3 > β 0 b 2 b 1 \left\{ \begin{matrix} \varepsilon \ge \alpha {{\sigma }_{1}}+{{\beta }_{0}}{{\sigma }_{2}} \\ \beta =\left\{ \begin{matrix} \begin{matrix} \begin{matrix} {{\beta }_{0}} & {{s}_{1}}{{s}_{2}}\ge 0 \\ \end{matrix} \\ \begin{matrix} -{{\beta }_{0}} & {{s}_{1}}{{s}_{2}}<0 \\ \end{matrix} \\ \end{matrix} & {{\beta }_{0}}>0 \\ \end{matrix} \right. \\ \alpha >\frac{{{\beta }_{0}}{{\sigma }_{5}}}{{{\sigma }_{3}}}>\frac{{{\beta }_{0}}{{b}_{2}}}{{{b}_{1}}} \\ \end{matrix} \right. εασ1+β0σ2β={β0s1s20β0s1s2<0β0>0α>σ3β0σ5>b1β0b2有:
− s 2 β ( ε s g n ( s 1 ) − ( α d 1 + β d 2 ) ) ≤ − ( ε − ∣ α d 1 + β d 2 ∣ ) ∣ s 2 ∣ β 0 ≤ 0 \begin{aligned} & -{{s}_{2}}\beta \left( \varepsilon sgn \left( {{s}_{1}} \right)-\left( \alpha {{d}_{1}}+\beta {{d}_{2}} \right) \right) \\ & \begin{matrix} {} \\ \end{matrix}\le -\left( \varepsilon -\left| \alpha {{d}_{1}}+\beta {{d}_{2}} \right| \right)\left| {{s}_{2}} \right|{{\beta }_{0}}\le 0 \\ \end{aligned} s2β(εsgn(s1)(αd1+βd2))(εαd1+βd2)s2β00 V ˙ ≤ 0 \dot{V}\le 0 V˙0,即第二层滑模面 s s s渐进稳定。
下面证明第一层滑模面稳定,考虑Lyapunov函数:
V 1 = 1 2 s 1 2 {{V}_{1}}=\frac{1}{2}s_{1}^{2} V1=21s12
求导:
V ˙ 1 = s 1 s ˙ 1 = s 1 ( c 1 x 2 + g 1 + b 1 u + d 1 ) \begin{aligned} & {{{\dot{V}}}_{1}}={{s}_{1}}{{{\dot{s}}}_{1}} \\ & \begin{matrix} {} \\ \end{matrix}={{s}_{1}}\left( {{c}_{1}}{{x}_{2}}+{{g}_{1}}+{{b}_{1}}u+{{d}_{1}} \right) \\ \end{aligned} V˙1=s1s˙1=s1(c1x2+g1+b1u+d1)将代入 u u u,得:
V ˙ 1 = s 1 ( b 1 u e q 2 + b 1 u s w + d 1 ) = s 1 ( b 1 u e q 2 + − α b 1 2 u e q 2 − β b 1 b 2 u e q 1 − ε b 1 s g n ( s 1 ) α b 1 + β b 2 − k b 1 s + d 1 ) = s 1 ( − β b 1 b 2 ( u e q 1 − u e q 2 ) − ε b 1 s g n ( s 1 ) α b 1 + β b 2 − k b 1 s + d 1 ) = − β b 1 b 2 ( u e q 1 − u e q 2 ) s 1 − ε b 1 ∣ s 1 ∣ + s 1 ( α b 1 + β b 2 ) d 1 α b 1 + β b 2 − k b 1 ( α s 1 2 + β s 1 s 2 ) = − β b 1 b 2 ( u e q 1 − u e q 2 ) s 1 − ε b 1 ∣ s 1 ∣ + s 1 ( α b 1 + β b 2 ) d 1 α b 1 + β b 2 − k b 1 ( α s 1 2 + β 0 ∣ s 1 s 2 ∣ ) ≤ ( ∣ ( α b 1 + β b 2 ) d 1 ∣ + ∣ β 0 b 1 b 2 ∣ u e q 1 − u e q 2 ∣ ∣ − ε b 1 ) ∣ s 1 ∣ α b 1 + β b 2 − k b 1 ( α s 1 2 + β 0 ∣ s 1 s 2 ∣ ) \begin{aligned} & {{{\dot{V}}}_{1}}={{s}_{1}}\left( {{b}_{1}}{{u}_{eq2}}+{{b}_{1}}{{u}_{sw}}+{{d}_{1}} \right) \\ & \begin{matrix} {} \\ \end{matrix}={{s}_{1}}\left( {{b}_{1}}{{u}_{eq2}}+\frac{-\alpha b_{1}^{2}{{u}_{eq2}}-\beta {{b}_{1}}{{b}_{2}}{{u}_{eq1}}-\varepsilon {{b}_{1}}sgn \left( {{s}_{1}} \right)}{\alpha {{b}_{1}}+\beta {{b}_{2}}}-k{{b}_{1}}s+{{d}_{1}} \right) \\ & \begin{matrix} {} \\ \end{matrix}={{s}_{1}}\left( \frac{-\beta {{b}_{1}}{{b}_{2}}\left( {{u}_{eq1}}-{{u}_{eq2}} \right)-\varepsilon {{b}_{1}}sgn \left( {{s}_{1}} \right)}{\alpha {{b}_{1}}+\beta {{b}_{2}}}-k{{b}_{1}}s+{{d}_{1}} \right) \\ & \begin{matrix} {} \\ \end{matrix}=\frac{-\beta {{b}_{1}}{{b}_{2}}\left( {{u}_{eq1}}-{{u}_{eq2}} \right){{s}_{1}}-\varepsilon {{b}_{1}}\left| {{s}_{1}} \right|+{{s}_{1}}\left( \alpha {{b}_{1}}+\beta {{b}_{2}} \right){{d}_{1}}}{\alpha {{b}_{1}}+\beta {{b}_{2}}}-k{{b}_{1}}\left( \alpha s_{1}^{2}+\beta {{s}_{1}}{{s}_{2}} \right) \\ & \begin{matrix} {} \\ \end{matrix}=\frac{-\beta {{b}_{1}}{{b}_{2}}\left( {{u}_{eq1}}-{{u}_{eq2}} \right){{s}_{1}}-\varepsilon {{b}_{1}}\left| {{s}_{1}} \right|+{{s}_{1}}\left( \alpha {{b}_{1}}+\beta {{b}_{2}} \right){{d}_{1}}}{\alpha {{b}_{1}}+\beta {{b}_{2}}}-k{{b}_{1}}\left( \alpha s_{1}^{2}+{{\beta }_{0}}\left| {{s}_{1}}{{s}_{2}} \right| \right) \\ & \begin{matrix} {} \\ \end{matrix}\le \frac{\left( \left| \left( \alpha {{b}_{1}}+\beta {{b}_{2}} \right){{d}_{1}} \right|+\left| {{\beta }_{0}}{{b}_{1}}{{b}_{2}}\left| {{u}_{eq1}}-{{u}_{eq2}} \right| \right|-\varepsilon {{b}_{1}} \right)\left| {{s}_{1}} \right|}{\alpha {{b}_{1}}+\beta {{b}_{2}}}-k{{b}_{1}}\left( \alpha s_{1}^{2}+{{\beta }_{0}}\left| {{s}_{1}}{{s}_{2}} \right| \right) \\ \end{aligned} V˙1=s1(b1ueq2+b1usw+d1)=s1(b1ueq2+αb1+βb2αb12ueq2βb1b2ueq1εb1sgn(s1)kb1s+d1)=s1(αb1+βb2βb1b2(ueq1ueq2)εb1sgn(s1)kb1s+d1)=αb1+βb2βb1b2(ueq1ueq2)s1εb1s1+s1(αb1+βb2)d1kb1(αs12+βs1s2)=αb1+βb2βb1b2(ueq1ueq2)s1εb1s1+s1(αb1+βb2)d1kb1(αs12+β0s1s2)αb1+βb2((αb1+βb2)d1+β0b1b2ueq1ueq2εb1)s1kb1(αs12+β0s1s2)显然,当有下式时:
{ ε > ( α σ 4 + β 0 σ 5 ) σ 1 + β 0 σ 4 σ 5 ∣ u e q 2 − u e q 1 ∣ σ 3 α > β 0 σ 5 σ 3 \left\{ \begin{matrix} \varepsilon >\frac{\left( \alpha {{\sigma }_{4}}+{{\beta }_{0}}{{\sigma }_{5}} \right){{\sigma }_{1}}+{{\beta }_{0}}{{\sigma }_{4}}{{\sigma }_{5}}\left| {{u}_{eq2}}-{{u}_{eq1}} \right|}{{{\sigma }_{3}}} \\ \alpha >\frac{{{\beta }_{0}}{{\sigma }_{5}}}{{{\sigma }_{3}}} \\ \end{matrix} \right. {ε>σ3(ασ4+β0σ5)σ1+β0σ4σ5ueq2ueq1α>σ3β0σ5 V 1 ≤ 0 {{V}_{1}}\le 0 V10,第一层滑模面 s 1 {{s}_{1}} s1稳定。
由于 s s s s 1 {{s}_{1}} s1都稳定,对任意的初始状态,有 lim ⁡ t → t 1   s → 0 \underset{t\to {{t}_{1}}}{\mathop{\lim }}\,s\to 0 tt1lims0 lim ⁡ t → t 2   s 1 → 0 \underset{t\to {{t}_{2}}}{\mathop{\lim }}\,{{s}_{1}}\to 0 tt2lims10,那么对于 s 2 {{s}_{2}} s2,有 lim ⁡ t → max ⁡ ( t 1 , t 2 )   s 2 = lim ⁡ t → max ⁡ ( t 1 , t 2 )   1 β ( s − α s 1 ) → 0 \underset{t\to \max \left( {{t}_{1}},{{t}_{2}} \right)}{\mathop{\lim }}\,{{s}_{2}}=\underset{t\to \max \left( {{t}_{1}},{{t}_{2}} \right)}{\mathop{\lim }}\,\frac{1}{\beta }\left( s-\alpha {{s}_{1}} \right)\to 0 tmax(t1,t2)lims2=tmax(t1,t2)limβ1(sαs1)0,即 s 2 {{s}_{2}} s2也能收敛。
综上所述,上文提出的控制律可以使得如、所描述系统稳定,整理如下:
控制律:
{ u = u e q 1 + u e q 2 + u s w u e q 1 = c 1 x 2 + g 1 b 1 c 1 > 0 u e q 2 = c 2 x 4 + g 2 b 2 c 2 > 0 u s w = − α b 1 u e q 2 − β b 2 u e q 1 − ε s g n ( s 1 ) α b 1 + β b 2 − k s \left\{ \begin{matrix} u={{u}_{eq1}}+{{u}_{eq2}}+{{u}_{sw}} \\ \begin{matrix} {{u}_{eq1}}=\frac{{{c}_{1}}{{x}_{2}}+{{g}_{1}}}{{{b}_{1}}} & {{c}_{1}}>0 \\ \end{matrix} \\ \begin{matrix} {{u}_{eq2}}=\frac{{{c}_{2}}{{x}_{4}}+{{g}_{2}}}{{{b}_{2}}} & {{c}_{2}}>0 \\ \end{matrix} \\ {{u}_{sw}}=\frac{-\alpha {{b}_{1}}{{u}_{eq2}}-\beta {{b}_{2}}{{u}_{eq1}}-\varepsilon sgn \left( {{s}_{1}} \right)}{\alpha {{b}_{1}}+\beta {{b}_{2}}}-ks \\ \end{matrix} \right. u=ueq1+ueq2+uswueq1=b1c1x2+g1c1>0ueq2=b2c2x4+g2c2>0usw=αb1+βb2αb1ueq2βb2ueq1εsgn(s1)ks控制器参数:
{ k > 0 ε > max ⁡ ( α σ 1 + β 0 σ 2 , ( α σ 4 + β 0 σ 5 ) σ 1 + β 0 σ 4 σ 5 ∣ u e q 2 − u e q 1 ∣ σ 3 ) β = { β 0 s 1 s 2 ≥ 0 − β 0 s 1 s 2 < 0 β 0 > 0 α > β 0 σ 5 σ 3 \left\{ \begin{matrix} k>0 \\ \varepsilon >\max \left( \alpha {{\sigma }_{1}}+{{\beta }_{0}}{{\sigma }_{2}},\frac{\left( \alpha {{\sigma }_{4}}+{{\beta }_{0}}{{\sigma }_{5}} \right){{\sigma }_{1}}+{{\beta }_{0}}{{\sigma }_{4}}{{\sigma }_{5}}\left| {{u}_{eq2}}-{{u}_{eq1}} \right|}{{{\sigma }_{3}}} \right) \\ \beta =\left\{ \begin{matrix} \begin{matrix} \begin{matrix} {{\beta }_{0}} & {{s}_{1}}{{s}_{2}}\ge 0 \\ \end{matrix} \\ \begin{matrix} -{{\beta }_{0}} & {{s}_{1}}{{s}_{2}}<0 \\ \end{matrix} \\ \end{matrix} & {{\beta }_{0}}>0 \\ \end{matrix} \right. \\ \alpha >\frac{{{\beta }_{0}}{{\sigma }_{5}}}{{{\sigma }_{3}}} \\ \end{matrix} \right. k>0ε>max(ασ1+β0σ2,σ3(ασ4+β0σ5)σ1+β0σ4σ5ueq2ueq1)β={β0s1s20β0s1s2<0β0>0α>σ3β0σ5

4 仿真

系统参数:
{ M = 1 ( k g ) m = 0.8 ( k g ) L = 0.3 ( m ) \left\{ \begin{matrix} M=1\left( kg \right) \\ m=0.8\left( kg \right) \\ L=0.3\left( m \right) \\ \end{matrix} \right. M=1(kg)m=0.8(kg)L=0.3(m)控制器参数:
{ c 1 = 0.8 c 2 = 0.4 k = 2 ε ( t ) = max ⁡ ( α σ 1 + β 0 σ 2 , ( α σ 4 + β 0 σ 5 ) σ 1 + β 0 σ 4 σ 5 ∣ u e q 2 ( t ) − u e q 1 ( t ) ∣ σ 3 ) β 0 = 0.1 α = 3.2 \left\{ \begin{matrix} {{c}_{1}}=0.8 \\ {{c}_{2}}=0.4 \\ k=2 \\ \varepsilon \left( t \right)=\max \left( \alpha {{\sigma }_{1}}+{{\beta }_{0}}{{\sigma }_{2}},\frac{\left( \alpha {{\sigma }_{4}}+{{\beta }_{0}}{{\sigma }_{5}} \right){{\sigma }_{1}}+{{\beta }_{0}}{{\sigma }_{4}}{{\sigma }_{5}}\left| {{u}_{eq2}}\left( t \right)-{{u}_{eq1}}\left( t \right) \right|}{{{\sigma }_{3}}} \right) \\ {{\beta }_{0}}=0.1 \\ \alpha =3.2 \\ \end{matrix} \right. c1=0.8c2=0.4k=2ε(t)=max(ασ1+β0σ2,σ3(ασ4+β0σ5)σ1+β0σ4σ5ueq2(t)ueq1(t))β0=0.1α=3.2初始状态:
{ x = 2 θ = 30 ∘ \left\{ \begin{matrix} x=2 \\ \theta =30{}^\circ \\ \end{matrix} \right. {x=2θ=30仿真结果如下:
在这里插入图片描述
在这里插入图片描述

5 参考文献

杨兴明,“基于分层滑模方法的两轮载人自平衡车的运动控制”,合肥工业大学学报,2013
王伟,“基于滑模方法的桥式吊车系统的抗摆控制”,控制与决策,2004
王伟,“桥式吊车系统的分级滑模控制方法”,自动化学报,2004

  • 6
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值