本次ICCV2021的Urban3D挑战赛旨在建立一个新的城市规模的点云三维语义分割基准。
我们生活的3D世界由各种各样的物体组成:建筑物、桥梁、树木、汽车、河流等等,每一个物体都有不同的外观、形态和功能。让机器能够精确地分割和标记这些不同的物体,对于提高机器与现实3D场景交互应用的性能尤为重要,例如场景级机器人导航、自动驾驶,甚至大规模城市3D建模等应用,这对未来的智慧城市规划和管理至关重要。
在过去几年中,三维点云理解技术取得了显著的进步。现有方法在点云目标识别和语义分割方面都有很高的准确率,但这些方法都局限于非常小的三维点云数据,很难直接推广到大规模点云的场景中。
在这次竞赛中,组织者提出了SensatUrban数据集来应对这一领域瓶颈,该数据集由英国多个城市地区的大型分区组成。由于逐点注释的高质量和语义类别的多样性分布,SensatUrban数据集使我们能够探索三维语义学习的一些关键研究问题。
本次竞赛致力于突出城市环境中超大密集点云的三维语义分割所面临的挑战,并在智能城市、自动驾驶、大型基础设施的自动化资产管理和智能建筑工地等应用领域激发创新工作。
挑战赛主页:https://urban3dchallenge.github.io
时间节点
竞赛开始时间:2021年5月12日
竞赛结束时间:2021年9月3日
参与者通知时间:2021年9月7日
研讨会时间:2021年10月11日
组织单位和嘉宾
赛题介绍
是一个大规模的城市摄影测量点云数据集,拥有近30亿个标注点。这个数据集由两个英国城市的大片区域组成,覆盖了大约6平方公里的城市区域。在数据集中,每个三维点被标记为地面、植被、建筑、墙壁、桥梁、停车场、铁路、汽车、人行道、自行车、水、交通道路和街道设施共13个类别中的一类,下图为两个城市中各个类别的标注比例。
参赛者需要对测试集中的每个点使用模型进行类别预测。模型的输入是三维点外观的坐标列表,即每个点的RGB值。模型的性能指标是13个类别预测的交并比(mIoU)。
竞赛数据集下载链接: http://point-cloud-analysis.cs.ox.ac.uk/
模型提交网站链接:https://competitions.codalab.org/competitions/31519
END
备注:3D
三维视觉交流群
扫码备注拉你入群。