本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!
专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html
文章目录
基于CCFM与Dyhead融合的YOLOv8优化:小目标与复杂场景下的精度提升【YOLOv8】
在目标检测领域,YOLOv8凭借其高效的性能和良好的通用性,成为了当前主流的目标检测算法之一。然而,随着更多复杂场景的引入,如何进一步提升检测的精度与速度成为了研究的重点。本文将介绍一种创新的融合改进方案,即通过融合CCFM(轻量化卷积特征融合模块)与Dyhead(动态检测头)来突破YOLOv8的极限,提高检测性能。
1. 引言
1.1 YOLOv8背景概述
YOLOv8(You Only Look Once)是YOLO系列的最新版本,其采用了新的特征提取模块、优化