图像分类、目标检测、语义/实例/全景分割、超像素

本文详细介绍了深度学习在计算机视觉领域的核心任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)以及超像素技术。图像分类识别图像内容,目标检测确定内容位置,语义分割为像素打类别标签,实例分割区分同一类别实例,全景分割同时考虑目标与背景的实例分割。超像素则通过聚合相似像素降低图像处理的复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 图像分类(image classification)

就是识别图像中有哪些内容,如有人、猫、车等(不需要知道每个内容位置和多少)

2. 目标检测(object detection)

识别图像中存在的内容,并检测出第个内容的位置
在这里插入图片描述

3. 图像分割(image segmentation)

根据某些规则将图片中的像素分成不同的部分、打上不同标签(即像素分类

3.1 语义分割(semantic segmentation)

  • 对图像中的每个像素打上类别标签,如下图,把图像分为人(红色)、树木(深绿)、草地(浅绿)、天空(蓝色)标签
  • 只区分类别,不区分各个目标
    在这里插入图片描述

3.2 实例分割(instance segmentation)

  • 第一步:在图像中将目标检测出来(目标检测)
  • 第二步:把目标的每个像素打上标签(语义分割)
  • 关注每个目标实例。语义分割不区分属于相同类别的不同实例(所有人都标为红色),实例分割区分同类的不同实例(使用不同颜色区分不同的人)
    在这里插入图片描述

3.3 全景分割(panoptic segmentation)

  • 第一步:把所有目标都检测出来
  • 第二步:区分出同个类别中的不同实例
  • 实例分割只对图像中的目标(如上图中的人)进行检测和按像素分割,区分不同实例(使用不同颜色),而全景分割是对图中的所有物体包括背景都要进行检测和分割,区分不同实例(使用不同颜色)
    在这里插入图片描述

4. 超像素(superpixels)

  • 超像素最大的功能之一,便是作为图像处理其他算法的预处理,在不牺牲太大精确度的情况下 降维!
  • 超像素最直观的解释,便是把一些具有相似特性的像素“聚合”起来,形成一个更具有代表性的大“元素”。
  • 而这个新的元素,将作为其他图像处理算法的基本单位。一来大大降低了维度;二来可以剔除一些异常像素点。
  • 至于根据什么特性把一个个像素点聚集起来,可以是颜色、纹理、类别等。
    在这里插入图片描述
### 像素分割目标检测的实现方法 像素分割目标检测是计算机视觉领域的重要技术,两者在应用场景和技术实现上各有侧重。以下是关于像素分割(包括语义分割实例分割全景分割)和目标检测的技术实现方法及代码示例。 #### 1. 目标检测的实现方法 目标检测的核心在于从图像中识别出多个对象,并输出每个对象的边界框及其类别标签[^3]。一种常见的目标检测算法是 Mask R-CNN,它扩展了 Faster R-CNN 的功能,不仅能够生成边界框,还能够生成像素级掩码。 - **Faster R-CNN**:通过区域建议网络(Region Proposal Network, RPN)生成候选区域,然后对这些区域进行分类和边界框回归。 - **Mask R-CNN**:在 Faster R-CNN 的基础上增加了一个分支,用于生成像素级掩码[^4]。 以下是一个基于 PyTorch 的 Mask R-CNN 实现代码示例: ```python import torch from torchvision.models.detection import maskrcnn_resnet50_fpn # 加载预训练的 Mask R-CNN 模型 model = maskrcnn_resnet50_fpn(pretrained=True) model.eval() # 输入图像预处理 from PIL import Image from torchvision import transforms image = Image.open("example.jpg") transform = transforms.Compose([transforms.ToTensor()]) image_tensor = transform(image) # 推理 with torch.no_grad(): prediction = model([image_tensor]) # 输出结果 boxes = prediction[0]['boxes'] # 边界框 labels = prediction[0]['labels'] # 类别标签 masks = prediction[0]['masks'] # 像素级掩码 scores = prediction[0]['scores'] # 置信度得分 ``` #### 2. 像素分割的实现方法 像素分割可以分为语义分割实例分割全景分割三种类型[^1]。每种类型的实现方法略有不同。 - **语义分割**:为图像中的每个像素分配一个类别标签,不区分同类别的不同实例[^3]。常用算法包括 U-Net 和 DeepLab。 - **实例分割**:不仅关注对象的定位和识别,还关注对象的像素级分割,输出每个对象的分割掩码[^3]。常用算法包括 Mask R-CNN。 - **全景分割**:结合语义分割实例分割,对图像中的所有物体(包括背景)进行检测和分割[^1]。 ##### (1) U-Net 实现语义分割 U-Net 是一种经典的语义分割模型,其结构由编码器和解码器组成,适合医学图像分割任务[^2]。 ```python import torch import torch.nn as nn import torch.nn.functional as F class UNet(nn.Module): def __init__(self): super(UNet, self).__init__() # 编码器部分 self.encoder = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) # 解码器部分 self.decoder = nn.Sequential( nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2), nn.ReLU(), nn.Conv2d(32, 1, kernel_size=1) ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return F.sigmoid(x) # 初始化模型 model = UNet() ``` ##### (2) Mask R-CNN 实现实例分割 Mask R-CNN 可以同时完成目标检测实例分割任务。具体实现已在目标检测部分展示。 ##### (3) 全景分割 全景分割通常结合语义分割实例分割的结果,使用特定的融合策略生成最终的分割图。例如,Panoptic-FPN 是一种流行的全景分割算法。 ```python import torch from torchvision.models.detection import maskrcnn_resnet50_fpn # 加载预训练的 Panoptic-FPN 模型 model = torch.hub.load('facebookresearch/detectron2', 'panoptic_fpn_R_101_3x') # 输入图像预处理 from PIL import Image from torchvision import transforms image = Image.open("example.jpg") transform = transforms.Compose([transforms.ToTensor()]) image_tensor = transform(image) # 推理 with torch.no_grad(): prediction = model([image_tensor]) # 输出结果 semantic_masks = prediction['sem_seg'] # 语义分割掩码 instance_masks = prediction['instances'].pred_masks # 实例分割掩码 ``` #### 3. 超像素分割 超像素分割是一种将图像划分为具有相似特性的像素块的技术,常用于图像预处理阶段。SLIC(Simple Linear Iterative Clustering)是一种常用的超像素分割算法。 ```python from skimage.segmentation import slic from skimage.io import imread import numpy as np # 读取图像 image = imread("example.jpg") # 使用 SLIC 算法进行超像素分割 segments = slic(image, n_segments=100, compactness=10) # 显示分割结果 import matplotlib.pyplot as plt plt.imshow(mark_boundaries(image, segments)) plt.show() ``` ### 总结 目标检测和像素分割是计算机视觉中的重要技术,目标检测关注对象的定位和分类,而像素分割关注像素级别的分类。常用的目标检测算法包括 Faster R-CNN 和 Mask R-CNN,常用的像素分割算法包括 U-Net、DeepLab 和 Panoptic-FPN。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值