介绍
Ultralytics YOLOv8不仅仅是另一个物体检测模型;它是一个通用的框架,旨在覆盖机器学习模型的整个生命周期——从数据接收和模型训练到验证、部署和真实世界跟踪。每种模式都有特定的用途,旨在为您提供不同任务和用例所需的灵活性和效率。
模式概览
了解Ultralytics YOLOv8支持的不同模式对于充分利用您的型号至关重要:
训练模式:在自定义或预加载的数据集上微调您的模型。
Val模式:用于验证模型性能的训练后检查点。
预测模式:释放模型对真实世界数据的预测能力。
导出模式:以各种格式准备好模型部署。
跟踪模式:将对象检测模型扩展到实时跟踪应用程序中。
基准测试模式:在不同的部署环境中分析模型的速度和准确性。
本文旨在为您提供每种模式的概述和实用见解,帮助您充分利用YOLOv8的潜力。
训练
训练模式用于在自定义数据集上训练YOLOv8模型。在这种模式下,使用指定的数据集和超参数来训练模型。训练过程包括优化模型的参数,使其能够准确预测图像中对象的类别和位置。
Val
Val模式用于在YOLOv8模型经过训练后对其进行验证。在这种模式下,在验证集上对模型进行评估,以测量其准确性和泛化性能。该模式可用于调整模型的超参数,以提高其性能。
预测
预测模式用于使用经过训练的YOLOv8模型对新图像或视频进行预测。在这种模式下,模型是从检查点文件加载的,用户可以提供图像或视频来进行推理。该模型预测输入图像或视频中对象的类别和位置。
导出
导出模式用于将YOLOv8模型导出为可用于部署的格式。在这种模式下,模型被转换为其他软件应用程序或硬件设备可以使用的格式。当将模型部署到生产环境中时,此模式非常有用。
跟踪
跟踪模式用于使用YOLOv8模型实时跟踪对象。在这种模式下,模型是从检查点文件加载的,用户可以提供实时视频流来执行实时对象跟踪。这种模式适用于监控系统或自动驾驶汽车等应用。
基准
基准模式用于评测YOLOv8的各种导出格式的速度和准确性。基准测试提供了有关导出格式的大小、mAP50-95度量(用于对象检测、分割和姿势)或准确性_top5度量(用于分类)的信息,以及ONNX、OpenVINO、TensorRT等各种导出格式中每张图像的推断时间(以毫秒为单位)。这些信息可以帮助用户根据其对速度和准确性的要求,为其特定用例选择最佳导出格式。