吴恩达机器学习(第七章)---逻辑回归

一、逻辑回归

逻辑回归通俗的理解就是,对已知类别的数据进行学习之后,对新得到的数据判断其是属于哪一类的。

eg:对垃圾邮件和非垃圾邮件进行分类,肿瘤是恶性还是良性等等。

1.为什么要用逻辑回归:

对于肿瘤的例子:

 在外面不考虑最右边的样本的时候我们拟合的线性回归的函数(红色)的阈值可以用,在0.5左右,但是当包含最右边样本的时候,所拟合的函数(蓝色)出现较大偏差。所以像这样的问题就不适合用线性回归而要用逻辑回归。

2.假设函数

 h(x)=g(z)---(2)

g(z)=\frac{1}{1+e^{-z}}-----(3)

z=\theta^Tx----(4) 

式(3)

当z很大时,g(z)就接近1;z很小时,就接近0.这就对应两种分类,属于该类(p)和不属于该类 (1-p)。

3.决策边界

 决策边界通俗点就是两种类别的分界线。看图:

eg:

洋红色和蓝色的线都是决策边界。而表示他们的函数就是式(4)z=\theta^Tx

4.代价函数 

 和线性回归一样,逻辑回归也有代价函数,也就是要优化的目标

 加上log主要是为了使他成为凸函数,可以防止由多个局部最优解。

但是这里有两个式子算起来就不方便,所以合并之后就是最终的代价函数。

cost(h(x),y)=-ylog(h(x))-(1-y)log(1-h(x))---(5)

式(5)式单个数据的代价,那所有的呢?即求和在求平均值。

J(\theta)=\frac{1}{m}\sum_{i=1}^{m}{cost}----(6)

5.梯度下降 

梯度下降也是类似的

\theta_j=\theta_j-\alpha\frac{\partial }{\partial \theta_j}J(\theta)---(7)

重复执行,到他收敛,就是我们要求的向量θ 

虽然代价函数很复杂,但是其求梯度下降的方式和线性回归一样的。

\theta_j=\theta_j-\alpha\frac{1}{m}\sum_{i=1}^{m}{(h(x^i)-y^i)x^i}---(8)

二、多元分类问题

多种类别分类问题其实就是把每一类当作y=1的类别,剩余的都是=0。

逻辑回归算法是一种常用的机器学习算法,用于解决二分类问题。编程实现逻辑回归算法的方法有多种,以下是其中一种基于原生Python实现逻辑回归算法的步骤: 1. 定义预测函数:逻辑回归算法的预测函数可以使用sigmoid函数来表示。sigmoid函数将线性回归的输出映射到(0, 1)之间的概率值,用来表示样本属于某一类的概率。 2. 构造损失函数:逻辑回归算法使用的损失函数是交叉熵损失函数。该损失函数可以衡量预测值和实际值之间的差异,并用于优化模型参数。 3. 采用梯度下降算法进行参数优化:梯度下降算法是一种迭代优化算法,用于最小化损失函数。通过计算损失函数关于模型参数的梯度,不断更新参数的值,使模型逐步收敛到最优解。 4. 采用向量化进行优化:为了提高计算效率,可以使用向量化操作对样本和参数进行批量处理,减少循环次数,提高计算速度。 以上是一种基于原生Python实现逻辑回归算法的一般步骤。具体的代码实现可以参考引用和提供的文章,其中包含了逻辑回归算法的原理介绍和Python代码实现。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [逻辑回归原理简述及代码实现](https://blog.csdn.net/weixin_41841149/article/details/94575629)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [Python实现逻辑回归(Logistic Regression)](https://blog.csdn.net/m0_47256162/article/details/129776507)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值