李沐--transformer要点记录

Transformer模型以其纯注意力机制和并行化处理克服了卷积网络对长序列建模的难题。它使用多头注意力模拟卷积的多通道特性,自回归机制在解码器中体现。自注意力允许完整输入的观察,通过掩码处理预测时仅能看到过去的输出。LayerNorm和BatchNorm区别在于规范化维度不同。Transformer的Scale Dot-Product Attention是最简单的注意力形式,通过内积和softmax计算权重。除以根号dk是为了避免梯度消失。MLP用于语义转换,embedding层结合position encoding。图像处理中,Transformer可以结合ResNet特征降低序列长度。卷积网络的归纳偏置包括局部性和平移不变性。额外的CLS token用于学习交互信息并进行分类。Transformer块可以堆叠,对图像的2D信息利用有限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

transformer

纯attention, 并行化 ,克服了卷积难以对长的序列进行建模的缺点

使用 multi-head attention 的原因是 模拟卷积神经网络的多通道机制

 transformer 使用了 auto-regressive (自回归机制),过去时刻的输出会作为当前时刻的输入,这一点在解码器部分有所体现,因为在做预测的时候是看不到当前时刻之后的输出的

 在自注意力机制里面,每一次都是能够看到完整的输入,因此通过使用带掩码的注意力机制对解码器进行训练,使得在预测第t个时刻的输出时,只能看到t个时刻之前的输出

 layer normal 和 batch normal 的区别:

batch normal 是对整个batch构成的特征图中,对每一个特征进行归一化,也就是减去 feature map 某一列构成的向量的均值,再除以方差

 layer normal 是对整个batch构成的特征图中,对每一个样本进行归一化,也就是减去 feature map 某一行构成的向量的均值,再除以方差

预测的时候使用的是全局的均值和方差

相似度 compatibility function 不同的注意力机制有不同的算法

transformer 使用的是 scaled dot-product attention 是一种最简单的注意力机制

query 和 key 的大小是等长的,每个 query 和 key作内积,如果内积的值越大,这两个向量的相似度越高,内积为0,两个向量内交,那么相似度为0

算出相似度之后,除以根号下 dk , dk也就是向量的长度,然后再使用一个 softmax 来得到权重,得到n个非负的,且向加值为1的权重,然后将这个权重作用在value上得到最终的输出

为什么要除以根号下 dk?

因为不除以的话,当dk比较大,也就是每个向量比较长的时候,做点积的时候,值会比较大或者比较小,值与值之间的差距就会比较大,在使用softmax作预测的时候,预测值就会偏向于0或者1,这时候就会认为训练的比较好,从而使得梯度变小,所以除以根号下dk是一个不错的选择

MLP 的作用是进行一个语义空间的转换,对序列信息进行一个有效的使用,也就是对position encoding 的编码进行一个有效的转化使用

embedding 层的权重乘上了根号下 dmodel = 512 为了保证和 position encoding 那一部分保证同一个 scale

能不能 文本 + 图像 multi-modility 的方法

可以使用 resnet之后的特征作为transformer的输入来降低输入序列的长度,这在vit论文中已经进行过尝试

卷积神经网络具有的先验信息(归纳偏置):

1. locality

2. 平移不变性:卷积是一个滑动窗口的操作,先做平移还是先做卷积的结果都是一样的

借鉴 bert 里面的 extra learnable embedding , vit 里面使用了 cls 的分类头,

因为所有的 token 都和其他的 token 做交互信息,因此作者相信,这个额外的 cls token能够从其他的 embedding 里面学习到有用的信息,从而最后根据cls的输出做最后的分类判断

transformer encoding 的输入和输出大小是一样的,因此想要叠多少个块就可以叠多少个块

transformer 对图像的 2d 信息利用的非常少,不像 CNN 一样,每层都使用了CNN 自存在的归纳偏置,只是在分割 patch 的时候利用到了位置编码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值