从本质上看,RAG是"让模型查阅外部知识",而微调是"让模型学会并内化知识"。这一根本差异决定了它们在不同场景下的适用性。
技术选型的关键依据
场景 | RAG | 微调 | 说明 |
---|---|---|---|
模型定制化需求 | ❌ | ✅ | 微调更适合塑造特定风格、口吻和人格特征 |
硬件资源限制 | ❌ | ✅ | 微调后的模型可以更小、更高效地部署在资源受限设备上 |
响应速度要求 | ❌ | ✅ | 微调模型无需检索步骤,响应更快,适合实时交互 |
数据更新频率 | ✅ | ❌ | RAG更适合知识库需频繁更新的场景,无需重新训练 |
幻觉控制需求 | ✅ | ❌ | RAG能提供基于事实的回答,严格控制幻觉 |
可解释性要求 | ✅ | ❌ | RAG可提供信息来源和依据,增强透明度与可解释性 |
成本控制考量 | ✅ | ❌ | RAG实施成本较低,无需大规模标注数据与训练资源 |
生成能力依赖度 | ✅ | ❌ | RAG保持模型原有创造性,避免"灾难性遗忘" |