2024中国物流系统集成商TOP100:附最新完整榜单

导语

大家好,我是社长,老K。专注分享智能制造和智能仓储物流等内容。欢迎大家到本文底部评论区留言。也欢迎大家使用我们的仓储物流技术AI智能体

新书《智能物流系统构成与技术实践人俱乐部

在这个经济动荡、变革迅速的时代,中国物流系统集成行业正经历着一场前所未有的剧烈洗牌。

就像一场看不见硝烟的商业战争,无数企业在夹缝中求生存、谋发展,有人在内卷中沉沦,有人却在逆境中突围。

近日,e-works Research发布了2024中国物流系统集成商百强榜,在百强企业中,超过61家企业的年营收甚至低于1亿元,仅有5家企业能突破10亿元大关。(名单见文尾)

面对严峻的市场挑战,优秀的物流系统集成商并非坐以待毙,而是在积极寻找突破口。

他们的破局策略令人叹为观止:有的企业开始大举"出海",寻找国际市场的增量空间;

有的企业持续加大研发投入,在技术创新上寻求差异化竞争;还有企业开始探索多元业务布局,试图打造更全面的解决方案。

这些企业就像商场上的智者,他们明白单纯的价格竞争只会陷入死循环。

他们开始关注技术升级、服务创新,甚至尝试并购整合,以期在这个内卷的市场中开辟属于自己的蓝海。

值得关注的是,在这个充满挑战的年度,仍有少数企业通过自身努力成功上市为行业注入了一剂强心针。

物流系统集成行业的未来,属于那些能在内卷中保持战略定力、持续创新的企业。它们或许规模不大,但却拥有破局的勇气和智慧。

2024,对于物流系统集成行业而言,注定是一个充满机遇与挑战的一年。

附录:2024中国物流系统集成商百强榜(来源e-works)

b13664891eb5004905df8887d32e1b77.png

d6d180cabaca8c828ba91c4ddc2ab281.png

16409e1acc0c206a1c32b69c83900bbe.png

d56f5a1d953f8b5d57dd909debd1691b.jpeg

-智能仓储物流技术研习社-

建立智能物流系统甲方、集成商与周边配套商

共同技术语言,填埋沟通鸿沟
提供高校物流专业教学现实素材

搭建可实际应用、接地气的

智能物流技术交流分享平台

3148cff28ec70938826eebc6bb91c580.gif

立体库 | AGV | 机器人 | 拣选 | 分拣 | 仿真 

| WMS | WCS | 输送 | 包装

|规划| |报告| |趋势| |历史| 

制造业| 电商 | 快递 | 鞋服 | 家具 | 商超 

| 零售 | 医药 | 冷链 | 第三方

更多推荐

智能仓储设备一锅炖

60页PPT:智慧物流信息装备

物流中心智慧物流建设规划方案

自动导引小车AGV基本知识

RGV在智能产线物流上的应用

PPT:厂内智能物流解决方案

3工位库前端RGV穿梭车-控制系统细节

货到人智能拣选方案设计实例

111页超详细PP:智能分拣输送装备与系统

欢迎大家到本文底部评论区留言。

Python数据分析项目案例通常会涉及收集、清洗、探索性和预测性分析等多个步骤,这里以一个简单的电影Top100榜单分析为例: 假设我们要研究的是IMDb Top 100电影的数据集,这个项目可能会包括以下步骤: 1. **数据获取**:首先从网站(如IMDb API或公开数据集库如Kaggle)下载包含评分、排名、导演、演员等信息的Top 100电影列表。 ```python import requests url = "https://api.themoviedb.org/3/top-rated-movies?api_key=<your_api_key>&language=en-US&page=1" response = requests.get(url) data = response.json() ``` 2. **数据清洗**:处理缺失值,标准化数据格式,并将数据加载到Pandas DataFrame中。 ```python import pandas as pd movies_df = pd.DataFrame(data['results']) ``` 3. **数据分析**: - 描述性统计:查看平均分、最高分、最低分等。 - 探索电影特点:比如年代分布、导演偏好、平均评分与票房的关系等。 - 可视化:利用Matplotlib或Seaborn绘制图表展示结果,如条形图、箱线图等。 4. **可视化与报告**:生成美观的图表并撰写关于发现的见解和趋势的报告。 ```python import matplotlib.pyplot as plt plt.figure(figsize=(10,6)) movies_df['vote_average'].hist(bins=20) plt.title('IMDb Top 100电影评分分布') plt.xlabel('评分') plt.ylabel('次数') plt.show() ``` 5. **预测分析**:如果数据允许,可以尝试进行简单的预测模型,比如预测某部电影是否能进入Top 100,或者票房收入等。 在这个过程中,关键在于理解数据、应用适当的统计技术以及清晰地呈现结果。完成之后,你可以分享你的分析过程和结论,以及如何使用Python工具链实现了数据分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值