智能驾驶ADAS算法设计及Prescan仿真(3): 自适应巡航ACC跟车目标选择策略设计与simulink仿真

本文是智能驾驶ADAS算法系列的第三篇,重点探讨自适应巡航(ACC)系统中的跟车目标选择策略设计与Simulink仿真。在0~150km/h速度范围内,ACC系统能自动切换巡航和跟车模式,保持与前车的安全距离。文章详细介绍了功能要求、整体算法框架以及传感器数据处理,包括直道/弯道目标选择、数据融合等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:

本系列文章将对智能驾驶ADAS算法进行完整的介绍,并在simulink中搭建算法模型,并在Prescan中搭建场景并且与simulink联合仿真对ADAS算法进行验证。智能驾驶ADAS算法详解及Prescan仿真系列文章将会对以下ADAS功能进行介绍与仿真:

1、前向碰撞预警 FCW算法 

2、定速巡航系统 CC算法

3、自适应巡航系统 ACC算法 Adaptive Cruise Control 

4、车道偏离预警 LDW Lane Departure Warning

5、车道纠偏辅助 LDP Lane Departure Prevention

6、车道居中辅助 LKA Lane Keep Assist

7、自动泊车算法 APA

8、自动紧急制动 AEB算法

9、行人保护 PDS 

10、自动变道功能 LCS

智能驾驶ADAS算法设计及Prescan仿真(1): 自适应巡航ACC控制策略设计与simulink仿真

正文如下:

一、功能介绍:

在0~150km/h的速度范围内,自适应巡航ACC自动切换巡航和跟车模式,前方无车,按照驾驶员设定车速稳定行驶,前方有车,与前车保持驾驶员设定的安全距离行驶。当前车停车,自动跟随停车;前车起步,自动跟随起步或在驾驶员的指令下起步。

ACC系统的算法功能有以下子功能需要实现。

1) 定速巡航功能;

2) 自主跟车功能;

3) Stop&Go启停功能;

4) 驾驶员可通过开关进行ACC功能的开启与关闭;

5) 驾驶员可通过开关进行巡航速度设定;

6) 驾驶员可通过开关进行跟车时距设定;

ACC系统适用工况:(0~150km/h)直道工况;需要在半径大于125m的弯道正常运行,需要支持一定坡度的坡道。

上一篇文章介绍了自适应巡航ACC算法的控制逻辑,本篇文章介绍ACC算法如何选择跟车目标。

二、整体算法框架

这套算法配置了2个传感器,在ACC算法内部会对两个传感器的数据进行融合。

 这两个传感器的感知范围与角度有区别:

 

三、ACC算法内部对传感器数据的处理

1、ACC算法整体框架

其中涉及传感器数据处理的模块有:传感器直道/弯道目标选择、传感器直道/弯道切换、传感器数据融合

 2、传感器直道目标选择

判断是否inlane的逻辑如下:

 

2、传感器弯道目标选择

 弯道判断是否inlane的逻辑

 

3、根据横摆角速度判断当前处在直道还是弯道

 

 

 4、传感器数据融合

TIS2 传感器计算的结果优先级更高

 

 

 

<think>嗯,用户问的是关于TJA控制Simulink模型的介绍。首先,我需要确定TJA在这里具体指什么。TJA可能是“Trajectory Jerk Algorithm”或者“Trajectory Following Algorithm”之类的缩写,但更常见的是在汽车控制领域,比如大众集团(Volkswagen)的TJA,即交通拥堵辅助系统(Traffic Jam Assist)。不过,也有可能用户指的是某种特定的控制算法,比如扭矩矢量控制(Torque Vectoring Control)或者其他的技术术语。需要先确认这一点。 假设用户指的是交通拥堵辅助系统(TJA),这在自动驾驶或高级驾驶辅助系统(ADAS)中是一个常见的功能。TJA通常结合自适应巡航控制(ACC)和车道保持辅助系统(LKAS),在低速拥堵情况下辅助驾驶员控制车辆,自动调整车速和保持车道。那么在Simulink中建模TJA控制系统的话,可能会涉及到车辆动力学模型、传感器模型(如雷达、摄像头)、控制算法(如PID控制器、状态机决策逻辑)以及仿真环境搭建。 接下来,我需要考虑用户可能的背景。他可能是一个学生或者工程师,正在学习如何使用Simulink进行控制系统建模,特别是针对汽车辅助系统。用户的需求可能是了解如何构建这样的模型,或者想获得一个基本的框架介绍。因此,回答需要结构清晰,涵盖模型的主要组成部分、可能使用的工具包(如Simulink的Vehicle Dynamics Blockset、Automated Driving Toolbox)、控制策略以及验证方法。 另外,用户可能希望知道具体的实现步骤或模块连接方式,但由于问题比较宽泛,可能需要先概述整体结构,再分部分简要说明。需要注意避免过于技术化的术语,但又要足够详细,让读者能够理解各部分的相互作用。可能还需要提到硬件在环(HIL)测试或联合仿真,但也许用户暂时不需要那么深入。 也有可能用户提到的TJA控制是指某种特定的算法,比如横向控制中的路径跟踪算法,这时候需要解释在Simulink中如何实现横向和纵向控制,例如使用模型预测控制(MPC)或者PID控制器,以及如何整合两者。还可能涉及到车辆模型,比如自行车模型,或者更复杂的多体动力学模型。 总结下来,回答的结构应该是:首先明确TJA的定义,然后分模块介绍Simulink模型的组成部分,包括传感器、控制算法、车辆模型、仿真环境,最后可能涉及验证和测试方法。同时,需要给出一个简单的示例模型框架,帮助用户直观理解。</think>### TJA 控制 Simulink 模型简介 **TJA**(Traffic Jam Assist,交通拥堵辅助系统)是一种用于车辆的高级驾驶辅助系统(ADAS),主要用于低速拥堵场景下的自动驾驶功能,通过协调纵向(车速)和横向(转向)控制,实现车辆自动跟车和车道保持。在 **Simulink** 中建立 TJA 控制模型时,通常需要结合车辆动力学、传感器数据和控制算法进行仿真验证。以下是关键模块和实现思路: --- #### **1. TJA 控制模型的核心模块** 1. **传感器模型** - **雷达/摄像头模拟**:通过 Simulink 的 **Automated Driving Toolbox** 生成虚拟的前车距离、相对速度、车道线信息等。 - **输入信号**:如本车速度、方向盘转角、车道线曲率等。 2. **纵向控制(车速控制)** - **自适应巡航ACC)**:基于前车距离和相对速度,通过 PID 或模型预测控制(MPC)调节油门/刹车,实现安全跟车。 - **目标逻辑**:设定安全距离阈值和最大/最小车速限制。 3. **横向控制(车道保持)** - **路径跟踪算法**:根据车道线曲率生成期望路径,使用预瞄控制或 MPC 计算方向盘转角。 - **状态机决策**:判断是否满足车道保持条件(如车道线可见性、车速范围)。 4. **车辆动力学模型** - 使用 **Simulink Vehicle Dynamics Blockset** 或简化自行车模型(Bicycle Model)模拟车辆运动学响应。 5. **人机交互(HMI)** - 设计驾驶员接管提示(如方向盘振动、声音报警)和系统状态显示。 --- #### **2. Simulink 建模示例** ```plaintext TJA Simulink 模型框架 ├── 输入层 │ ├── 虚拟交通场景(Automated Driving Toolbox) │ ├── 传感器信号(前车距离、车道线曲率) │ └── 驾驶员指令(如激活/关闭 TJA) ├── 控制层 │ ├── 纵向控制子系统(ACC 算法) │ └── 横向控制子系统(路径跟踪算法) ├── 执行层 │ ├── 车辆动力学模型(Engine/Brake/Steering 响应) │ └── 轮胎-路面摩擦模型 └── 输出层 ├── 车辆状态(位置、速度、加速度) └── 可视化(Simulink 3D Animation 或 Scope 显示) ``` -- #### **3. 实现步骤** 1. **场景搭建** - 使用 **Driving Scenario Designer** 创建拥堵路况(前车加减速、车道线变化)。 2. **控制算法设计** - 纵向控制:通过 PID 调节油门/刹车,公式示例: \[ a_{\text{desired}} = K_p \cdot \Delta d + K_d \cdot \Delta v \] - 横向控制:基于预瞄点的路径跟踪,计算方向盘转角。 3. **联合仿真** - 将控制模型 CarSim/Prescan 等工具联合仿真,验证复杂场景下的鲁棒性。 4. **硬件在环(HIL)测试** - 部署到实时处理器(如 dSPACE),连接真实 ECU 测试控制逻辑。 --- #### **4. 关键挑战** - **多目标协调**:纵向横向控制的动态耦合(如加速时转向稳定性)。 - **传感器噪声处理**:对虚假信号的鲁棒性(如车道线误识别)。 - **安全边界设计**:紧急情况下的最小风险策略(Minimal Risk Maneuver)。 --- 通过 Simulink 的模块化建模和仿真能力,可以高效验证 TJA 系统的功能,并优化其控制逻辑。如果需要具体模型示例或代码片段,可以进一步说明需求方向!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自动驾驶Player

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值