“傻瓜”学计量——内生性

提纲:

1.内生性定义?

2.什么原因会导致内生性?

3.怎么检测模型中的内生性?

4.怎么解决内生性?

一、内生性(Endogeneity)

是指自变量\chii与误差项\varepsilon存在相关关系,即两者协方差不等于0。

因变量Y:研究的被解释变量,因果问题中的“果”

自变量x:研究的解释变量,因果关系中的“因”

误差项\varepsilon:回归模型中的误差,即自变量不能解释的波动部分

回归系数\beta:通过回归估计的自变量与因变量的相关系数


思考问腿

1.模型中有内生变量一定有问题吗?

不一定。但是在计量中,若出现内生性问题,则需要解决。

因为理论模型中经常出现内生变量。

内生变量(endogenous variable):被模型所决定的变量

外生变量(exogenous variable):不被模型所决定的已知变量

2.为什么内生性是个问题?

理由如下图:


二、什么原因会导致内生性?

(一)遗漏变量(omitted variable)

1.定义

是指模型中忽略了一个或者多个相关变量。

(需同时满足两个条件:1自变量x与遗漏变量存在相关关系2.遗漏变量是影响被解释变量Y的一个因素)如右图所示:

注意:只要是没有加入模型的变量,都是遗漏变量嘛?❌

2.为什么存在遗漏变量,就会出现内生性问题?

第一行下角标"r"是正确模型的标记;第二行的"w"下角标是错误模型的标记。

最后一张图片虚线方框中,若原模型正确,则原模型残差项与自变量X1之间的协方差为0。

3. 为什么存在遗漏变量,模型系数\beta会是有偏的?

(二)联立偏误(simultaneity) /  反向因果(reverse causality)

1.定义

联立偏误(simultaneity):回归模型中的一个或者多个自变量与因变量同时被决定。(双向影响)

例如,B站视频的播放量会影响点赞率,而点赞率也会影响播放量。

反向因果:因果关系颠倒

2.为什么联立偏误会导致模型产生内生性?

(三)测量偏差(measurement error/errors-in-variables)

1.定义

测量自变量时产生的误差

(若是测量变量产生误差,则不会对结果有影响,因为在这种情况下产生的误差会被直接包含在误差项中)

2.为什么存在测量误差会导致模型产生内生性?

三、怎么检测模型中是否存在内生性?

检验的大致思路:

1.假定一个自变量x是内生变量

2.取一个外生变量Z,取值不受回归模型中x的因素影响,而且  ,Z的取值与内生变量x高度相关

3.用外生变量Z来预测内生变量X。公式如下:

此时,所有的内生关系都包含在u中。

4.两种方法

(1)

第一步,将内生变量加到原来的模型中,得到的模型如下:

其中v是外生误差项,u是内生误差项。

第二步,再检测系数\alpha2是否显著

(2)

第一步,同上

第二步

用外生部分预测x取值,如上图

因此原模型发生变化,如下图所示:

\alpha1=\beta1,则自变量x并不存在内生性问题;

\alpha1不等于\beta1,则自变量X存在内生性问题。

四、如何解决内生性问题?

总原则:不能根除,只能控制。

(一)工具变量

选取一个外生变量Z,取值不受回归模型中因素的影响,且Z的取值与内生变量下的取值高度相关

(类似三-4-(2)的思想)

(二)匹配法:倾向得分匹配(PSM)

使用条件:自变量是0-1变量的时候

(三)双重差分法DID

思路:针对处理行为(treatment),将样本中的个体分为两组,第一组是接受处理组,第二组是没有接触处理组。

步骤:

1.处理行为后的特征值-处理行为前的特征值(第一次差分)

2.处理组变化量-控制组的变化量(第二次差分)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值