模型架构
CNN-LSTM模型是一种强大的混合神经网络架构,它巧妙地结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)的优势。这种模型在处理具有空间结构和时间依赖性的数据时表现出色,如视频分析、语音识别和时间序列预测等领域。
CNN-LSTM模型的架构主要由以下几个关键组件构成:
-
输入层 :接收原始数据序列。
-
CNN层 :
-
卷积层 :通过卷积核提取局部特征
-
池化层 :降低数据维度,保留重要特征
-
全连接层 :将卷积层输出转换为固定长度向量
-
-
LSTM层 :
-
LSTM单元 :处理序列数据,捕捉长期依赖关系
-
遗忘门 :决定哪些信息被遗忘
-
输入门 :决定哪些新信息被记忆
-