【2025CVPR-图象去雾方向】BEVDiffuser:基于地面实况引导的BEV去噪的即插即用扩散模型

论文地址:https://arxiv.org/pdf/2502.19694v1

1. 研究背景与问题

  • BEV表示的重要性​:鸟瞰图(BEV)是自动驾驶感知任务的核心,提供场景的全局视角,但存在固有噪声问题。噪声来源包括传感器(相机、LiDAR)缺陷和学习过程的局限性,导致下游任务(如3D目标检测)性能下降。
  • 现有方法的不足​:当前BEV生成方法(如BEVFormer、BEVFusion)未充分解决噪声问题;现有扩散模型增强方法(如DiffBEV、Dif-FUSER)依赖噪声信息作为条件,且推理时需多次迭代,计算开销大。

2. 方法创新:BEVDiffuser

核心设计
  • 条件扩散模型​:以真实物体布局(ground-truth object layout)为条件引导去噪过程。布局定义为 l={o0​,o1​,.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值