FOC 控制笔记【三】磁链观测器

一、磁链观测器基础

1.1 什么是磁链

磁链(magnetic linkage)是电磁学中的一个重要概念,指导电线圈或电流回路所链环的磁通量。单位为韦伯(Wb),又称磁通匝。

公式为:

\psi=N\phi

  • N= 线圈匝数
  • \phi = 穿过单匝数的平均磁通量的乘积

反电动势和磁链的公式:

e=-\frac{d\Psi }{dt}

  • e= 反电动势
  • \frac{d\Psi }{dt} = 磁链的微分

我们可知,磁链的微分就是负的反电动势,反电动势的积分就是负的磁链。

1.2 电机电压磁链方程

  • u_{\alpha } 、u_{\beta } = 两轴的定子电压
  • i_{\alpha } 、i_{\beta } = 两轴的定子电流
  • Rs = 定子电阻
  • \omega = 转子电角速度
  • \theta = 转子位置角
  • \varphi_{m} = 磁链值

二、磁链观测器公式推导

由电机电压磁链方程移项后可得:

  • \dot{i_{\alpha }} = i_{\alpha} 的导数

我们先定义 y1 和 y2,在这里 y 不包括未知量,可以作为一个已知量:

2.1 构造状态空间变量 X

此时移项后定义状态变量 \dot{x1} 和 \dot{x2}

对 \dot{x1} 和 \dot{x2} 求积分得:

其原理是求导公式,所以 x1 和 x2 求积分后消去了 \omega

{\sin(\omega t)}' = \omega cos(\omega t)

2.2 构造空间向量 eta(x)

此时可以定义空间向量 eta(x),他最终可以描述出当前转子角度:

2.3 构造非线性磁链观测器

观测器模型:

根据此模板构造磁链观测器:

  • \hat{\dot{x1}} 和 \hat{\dot{x2}} 为估计的 x 导数

此观测器在下条件中收敛:

2.3.1 观测器的欧几里得范数

欧式范数也称之为欧式距离,||x|| 表示向量的长度计算方法依然是向量各个元素模的平方之和再开方。

根据欧式范数,所以下列公式相等,我们才能构造之前的磁链观测器:

三、磁链观测器的离散化

我们上面得到了一个磁链观测器的基本方程:

但是此观测器不能直接变成与代码,需要加入周期时间这一变量:

再根据此对观测器进行向后一阶差分,也就是离散化可得:

根据之前的 x 公式:

 

我们移项后可得估算的角度:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值