背阔肌(05):史密斯机俯身划船

本文详细介绍了史密斯俯身划船的动作要领和注意事项,旨在通过这一安全有效的背阔肌锻炼方法增强肌肉厚度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自: http://blog.sina.com.cn/s/blog_60ad794b0100f35f.html


   

史密斯俯身划船(Smith Bent-over Row),类似于杠铃俯身划船动作之一,也是增加背阔肌厚度的好方法,只是杠铃被限制运动轨迹。锻炼动作与作用基本类似与杠铃俯身划船,但对于早期学习俯身划船动作时史密斯划船无疑最为安全。

 

目标肌群:背阔肌中部(即内侧)、大圆肌

 

动作要领:

 

1.紧靠史密斯机横杠站立,将史密斯机的挡板调到膝盖的高度或更低位置;宽距站姿,身体从臀部开始向前俯;稍弯双膝,直到上半身与地面成45度角,双肩向前要超过横杠;双手正握,握距比肩稍宽,双臂完全伸直。

 

2.在拉起杠钤之前收缩后背肌肉,保持脊骨正常弯曲,同时也要收缩臀大肌和胴绳肌,这样可以保持身体成45度角不变。

 

3. 深吸一口气,在放下杠钤过程中要摒住呼吸,开始时双臂伸直,但不要锁住。

 

4. 以肘部带动器械,用后背和肩部的肌肉将杠铃拉起,尽可能高,直到其触到你的上腹部;稍停,然后将杠铃有控制地降到初始位置。

  

 

 

注意事项:

1.在动作过程中,不要抬起上半身,应一直保持与地面水平或稍向上倾的姿势,特别是在拉起的动作过程中。

 

2.在动作的顶点,收缩双肩并挤压,使斜方肌完全收缩,以此来打造肌肉的厚度。

 

3. 握距比肩宽才能使肘部能够超过背部,在拉起中能够充分收缩。这是最大限度收缩背阔肌的关键,特别是背阔肌的上半部分。

 

4.在这一训练中,双脚和身体的位置一定要规范,因为杠铃的运动路径已经被固定,可向前或向后移动身体作适当,调节以保证动作的有效性。

 

5.为了防止下背部受伤,要一直保持后背绷紧。如果在上拉的时候脊柱完全弯曲,对下背部来说是非常危险的。





                   

 

 

更全面后腰和臀背部肌群锻炼方法: 后腰和臀部肌群综合锻炼方法大全 持续更新中!!!)


STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的微控制器,广泛应用于工业控制、物联网设备等领域。本资料包主要提供了STM32F103在实现RS485通信及Modbus RTU协议的主和从模式下的源代码实例,帮助开发者快速理解和应用这一通讯技术。 RS485是一种物理层通信标准,用于构建多点数据通信网络,具有传输距离远、抗干扰能力强的特点。它采用差分信号传输方式,可以实现双向通信,适合于长距离的工业环境。在RS485网络中,通常有一个主(Master)和一个或多个从(Slave),主负责发起通信,从响应主的请求。 Modbus RTU(Remote Terminal Unit)是一种常用的过程控制工业通信协议,基于ASCII或RTU(远程终端单元)报文格式,常用于PLC(可编程逻辑控制器)和嵌入式系统之间的通信。Modbus RTU使用串行通信接口,如RS485,以减少布线成本和提高通信效率。 在STM32F103上实现RS485 Modbus RTU通信,首先需要配置GPIO口作为RS485的硬件接口,包括数据线(一般为RX和TX)和方向控制线(DE和RE)。DE线用于控制发送数据时的数据线方向,RE线则用于接收数据时的方向。这些设置可以通过STM32的HAL库或LL库进行编程。 接着,你需要编写Modbus RTU协议栈的实现,这包括解析和构造Modbus报文、错误检测与处理、超时管理等。Modbus RTU报文由功能码、地址、数据和CRC校验码组成。主向从发送请求报文,从会根据接收到的功能码执行相应的操作,并返回响应报文。 在主端,你需要实现发送请求和接收响应的函数,以及解析从返回的数据。在从端,你需要监听串口,解析接收到的请求,执行相应的功能并构造响应报文。
内容概要:本文档详细介绍了一个使用Python实现最小二乘支持向量(LSSVM)进行时间序列预测的项目实例。项目景指出,传统的时间序列预测方法在处理非线性、复杂数据时存在局限性,而LSSVM通过将SVM的二次规划问题转化为线性方程组求解,提高了计算效率和预测精度。项目目标包括数据预处理、特征提取、模型构建、模型评估、优化与调参以及可视化展示。项目挑战主要集中在数据质量、模型泛化能力、计算效率、模型解释性、实时性和超参数优化等方面。项目特点与创新体现在高效的预测算法、多样化的数据处理方法、自动化的特征提取、多维度的模型评估、可视化的结果展示和高效的超参数优化。最后,文档展示了模型架构和具体的代码实现,包括数据预处理、LSSVM模型的构建与训、预测和评估。 适合人群:具备一定编程基础,特别是对Python和器学习有一定了解的研发人员,尤其是从事时间序列预测相关工作的数据科学家和工程师。 使用场景及目标:①适用于金融、气象、交通、能源、医疗、制造业和零售业等领域的时间序列预测任务;②帮助用户理解LSSVM算法的工作原理及其相对于传统SVM的优势;③通过实际代码示例,指导用户如何实现和优化LSSVM模型,以提高预测精度和处理大规模数据的能力。 阅读建议:本项目不仅提供了详细的理论景和技术细节,还包含了完整的代码实现和可视化工具,因此在学习过程中,建议读者结合代码逐步实践,并通过调整超参数和实验不同的数据集来加深对LSSVM的理解。同时,注意数据预处理和特征提取的重要性,这对模型性能有着关键影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值