【CVPR20‘】Randla-net: Efficient semantic segmentation of large-scale point clouds

Hu, Q., Yang, B., Xie, L., Rosa, S., & Guo, Y. (2020). Randla-net: Efficient semantic segmentation of large-scale point clouds. Proceedings of the. http://openaccess.thecvf.com/content_CVPR_2020/html/Hu_RandLA-Net_Efficient_Semantic_Segmentation_of_Large-Scale_Point_Clouds_CVPR_2020_paper.html

我们研究了大规模3D点云的高效语义分割问题。大多数现有方法通过依赖昂贵的采样技术或计算重的预处理/后处理步骤,只能在小规模点云上进行训练和操作。在本文中,我们引入了RandLA-Net,这是一种直接推断大规模点云每个点语义的高效轻量级神经架构。我们方法的关键在于使用随机点采样而不是更复杂的点选择方法。尽管随机采样在计算和内存效率方面表现出色,但它可能会偶然丢弃关键特征。为了克服这一问题,我们引入了一个新颖的局部特征聚合模块,逐渐增加每个3D点的感受野,从而有效地保留几何细节。大量实验证明我们的RandLA-Net可以在一次传递中处理100万个点,速度比现有方法快200倍。此外,我们的RandLA-Net在两个大规模基准Semantic3D和SemanticKITTI上明显优于最先进的语义分割方法。

在这里插入图片描述
Figure 1. PointNet++ [44], SPG [26]和我们的方法在SemanticKITTI [3]上的语义分割结果。我们的RandLA-Net仅需0.04秒即可直接处理包含105个点的大型点云,该点云位于3D空间中的150×130×10米,比SPG快高达200倍。红色圆圈突出显示了我们方法卓越的分割准确性。

在这里插入图片描述
Figure 2. 在RandLA-Net的每一层中,大规模点云被显著降采样,但仍能保留进行准确分割所需的特征。

在这里插入图片描述
Figure 3. 提出的局部特征聚合模块。顶部面板显示了提取特征的位置空间编码块和基于局部上下文和几何形状的注意力池化机制,该机制对最重要的邻近特征进行加权。底部面板显示了如何在残差块内将两个这些组件链接在一起,以增加感受野大小。

在这里插入图片描述
Figure 4. 膨胀残差块的示意图,它显著增加了每个点的感受野(虚线圆圈),彩色点表示聚合的特征。L: 局部空间编码,A: 注意力池化。

在这里插入图片描述
Figure 6. RandLA-Net在SemanticKITTI [3]验证集上的定性结果。红色圆圈表示失败的情况。

  • 11
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知为

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值