计算机视觉中的对象跟踪(完整指南)
目标跟踪是计算机视觉中的一项重要任务。 对象跟踪器是许多处理摄像机视频流的计算机视觉应用程序的组成部分。 在本文中,我们将讨论最先进的对象跟踪算法、不同的方法、应用程序和对象跟踪软件。
如果您希望为商业项目开发带有对象跟踪的视频分析,请查看我们的企业计算机视觉平台 Viso Suite 。 全世界的大型组织都使用它来构建、部署和扩展具有深度学习的对象跟踪系统。 作为无代码平台,Viso 提供模块化构建块和可视化开发工具。
特别是,本文将涵盖以下内容:
- 什么是对象跟踪,它是如何使用的?
- 视频跟踪和图像跟踪
- 跟踪对象的挑战
- 单目标和多目标跟踪
- 你需要知道的目标跟踪算法
- 最先进的方法(OpenCV 对象跟踪、Matlab 跟踪、MdNet 和 DeepSort 对象跟踪)
什么是对象跟踪?
对象跟踪是深度学习的一种应用,程序获取一组初始对象检测并为每个初始检测开发一个唯一标识,然后在检测到的对象在视频中的帧周围移动时跟踪它们。
换句话说,对象跟踪是自动识别视频中的对象并将它们解释为一组高精度的轨迹的任务。
通常,被跟踪的对象周围有一个指示,例如,跟随对象的周围正方形,向用户显示对象在屏幕上的位置。

对象跟踪的用途和类型
对象跟踪用于涉及不同类型输入素材的各种用例。 无论预期输入是图像还是视频,还是实时视频还是预先录制的视频,都会影响用于创建对象跟踪应用程序的算法。
输入的类型也会影响对象跟踪的类别、用例和应用。 在这里,我们将简要介绍几种流行的对象跟踪用途和类型,例如视频跟踪、视觉跟踪和图像跟踪。
视频跟踪
视频跟踪是对象跟踪的一种应用,其中移动对象位于视频信息中。 因此,视频跟踪系统能够处理实况、实时镜头以及录制的视频文件。
用于执行视频跟踪任务的进程因目标视频输入类型而异。 当我们在本文后面比较批处理和在线跟踪方法时,将对此进行更深入的讨论。
不同的视频跟踪应用程序在视频分析、安全、军事、交通和其他行业的场景理解中发挥着重要作用。 今天,广泛的实时计算机视觉和深度学习应用程序使用视频跟踪方法。 我建议您查看我们 最流行的计算机视觉应用程序 的广泛列表。
视觉追踪
视觉跟踪或视觉目标跟踪是计算机视觉中的一个研究课题,应用于大量的日常场景。 视觉跟踪的目标是估计在没有视频其余部分可用的情况下初始化的视觉目标的未来位置。
图像追踪
图像跟踪旨在检测给定输入中感兴趣的二维图像。 然后,当他们在设置中移动时,会持续跟踪该图像。 因此,图像跟踪 非常适合 具有高对比度图像(例如黑白)、不对称、少量图案以及感兴趣图像与图像集中其他图像之间存在多个可识别差异的数据集。
图像跟踪依赖于计算机视觉在图像目标被预先确定后检测和增强图像。 探索我们关于 图像增强 的文章。
物体跟踪相机
现代对象跟踪方法可以应用于基本上任何摄像机的实时视频流。 因此,USB 摄像机或 IP 摄像机的视频馈送可用于执行对象跟踪,方法是将各个帧馈送到跟踪算法。 跳帧或并行处理是通过一个或多个摄像机的实时视频馈送来提高对象跟踪性能的常用方法。

最低0.47元/天 解锁文章
367





