机器学习中的ROC曲线理解和实战

一、什么是ROC曲线

1、ROC曲线,又可以称之为接受者操作特征曲线(Receiver Operating Characteristic Curve),

ROC曲线下的面积,称为AUC(Area Under Cureve),可以衡量评估二分类模型的分类好坏。

2、AUC是1乘以的方格中的一部分,起大小在0-1之间,AUC越大说明模型效果越好,

  • AUC=1,是完美的分类器,该模型至少存在一个阈值,可以将正负样本完美的划分开
  • 0.5<AUC<1,优于随机猜测,数值越大,分类效果越好
  • AUC=0.5,说明模型没有分类效果,即随机
  • AUC<0.5,比随机猜测要差,然而若方向预测,该模型可以优于随机猜测

二、ROC曲线如何绘制

1、ROC曲线由预测概率和阈值来共同决定

分类模型的输出结果中包含一个0到1的概率值,该概率代表着对应的样本被预测为某类别的可能性,通过阈值来进行划分,概率大于阈值的为正,概率小于阈值的负。

样本 预测概率 阈值(thresholds=0.9) 阈值(thresholds=0.5)
1 0.95
2 0.86
3 0.64
4 0.43

2、TPR和FPR

ROC曲线的横坐标为FPR,纵坐标为TPR,FPR是错误的预测为正的概率,TPR为正确的预测为正的概率(注意TPR+FTR不是固定等于1的

                                   FPR=负的预测为正的数量/原本为负的数量(FPR = FP/(TN+FP))

                                   TPR=正的预测为正的数量/原本为正的数量(召回率:TPR = TP/(TP+FN))

         备注:TN+FP为负样本总量;TP+FN为正样本总量。

                     FPR越小越好,TPR越大越好

                                 

三、ROC的曲线绘制步骤

1、将全部样本按概率递减排序

2、

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值