相互独立的Gamma分布变量之和的分布

文章探讨了独立随机变量的和在概率密度上的性质,当多个变量分别服从特定分布时,它们的和也服从特定的新分布,这一现象被称为分布的可加性。文中给出了具体的数学表达式和推广到n个变量的情况。
摘要由CSDN通过智能技术生成

两个变量之和的情况

设随机变量X,Y相互独立,并且X服从参数为\alpha ,\theta\Gamma分布,记作X\sim \Gamma (\alpha ,\theta )Y服从参数为\beta ,\theta\Gamma分布,记作Y\sim \Gamma (\beta ,\theta )XY的概率密度分别为:

f_{X}(x)=\left\{\begin{matrix} \frac{1}{\theta ^{\alpha }\Gamma (\alpha )}x^{\alpha -1}e^{-x/\theta }, x>0 \\ 0,\; \; \; \; \; other \end{matrix}\right. 

其中\alpha >0,\theta >0

 f_{Y}(y)=\left\{\begin{matrix} \frac{1}{\theta ^{\beta }\Gamma (\beta )}y^{\beta -1}e^{-y/\theta }, y>0 \\ 0,\; \; \; \; \; other \end{matrix}\right.

其中\beta >0,\theta >0

那么随机变量Z=X+Y服从参数为\alpha +\beta ,\theta\Gamma分布,记作X+Y\sim \Gamma (\alpha+\beta ,\theta )

推广到n个变量之和的情况

X_{1},X_{2},\cdots ,X_{n}相互独立,且X_{i}服从参数为a_{i},\beta (i=1,2,\cdots ,n)\Gamma分布,记作X_{i}\sim \Gamma (\alpha_{i} ,\beta ),则

\sum_{i=1}^{n}X_{i}服从参数为\sum_{i=1}^{n}a_{i},\beta (i=1,2,\cdots ,n)\Gamma分布,记作

\sum_{i=1}^{n}X_{i}\sim \Gamma (\sum_{i=1}^{n}\alpha_{i} ,\beta )

这一性质称为\Gamma分布的可加性。

  • 9
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值