目录
PID控制是比例(Proportional)积分(Integral)微分(Differential)控制的简称。在生产过程自动控制的发展历程中,PID控制是历史最久、应用最广、适应性最强和控制效果良好的一种基本控制方式。在工业生产过程中,PID控制算法占85%~90%,即使在计算机控制已经得到广泛应用的现在,PID控制仍是主要的控制算法。
4.l PID控制的特点
在20世纪40年代以前,除在最简单的情况下可采用开关控制外,PID控制是唯一的控制方式。此后,随着科学技术的发展特别是电子计算机的诞生和发展,涌现出许多新的控制方法。然而直到现在,PID控制由于它自身的优点仍然是得到最广泛应用的基本控制方式。即使目前最新式的过程控制计算机,其基本的控制功能也仍然保留PID控制。一般来说,PID控制具有以下优点:
原理简单,使用方便。PID控制算法简单,参数较少,容易采用机械、流体、电子、计算机算法等各种方式实现,因此非常容易做成各种标准的控制装置,方便各种工业控制场合应用。
整定方法简单。由于PID控制参数相对较少,且每个参数作用明确,相互干扰较少,使得PID控制器参数的调整较为方便,且可以总结、归纳出一种适用于各种不同领域的整定方法。
适应性强。基于偏差消除偏差的PID反馈控制思想,使得系统可以克服一切引起误差变化的干扰,不必像前馈控制这类的控制系统,需要针对每一个扰动设计独立的控制器,简化了系统结构。使得PID控制可以广泛应用于化工、热工、冶金、炼油及造纸、建材等各种生产部门。
鲁棒性强。不同于基于模型的控制,PID反馈控制对模型的适应性强,采用PID控制时,对象的非线性、时变性对控制结果影响相对较小,系统控制品质对被控对象特性的变化敏感程度较低。
具有朴素的“智能”思想。PID控制规律中的比例调节规律依据当前存在的偏差产生调节作用;积分依据偏差的持续累计,用于消除那种变化缓慢,幅度较小但持续存在的偏差;微分控制对速度敏感,依据“未来的偏差”有“预见”性的进行调节。可以看出,PID控制在消除偏差时,综合考虑了现在(P)、过去(I)和未来(D),如同一个有经验的控制者。
在过程控制中,绝大部分都采用 PID控制。例外的情况有两种。
一种是被控对象易于控制而控制要求又不高的,可以采用更简单的开关控制方式。
另一种是被控对象特别难以控制而控制要求又特别高的情况,这时如果 PID控制难以达到生产要求就要考虑采用更先进的控制方法。
4.2 比例调节(P调节)
4.2.1 比例控制的调节规律和比例带
在 P调节中,调节器的输出信号u与偏差信号e成比例,即
u=Kce
式中,Kc称为比例增益(视情况可设置为正或负)。
在实际应用中,由于执行器的运动(如阀门开度)有限,控制器的输出u(t)也就被限制在一定的范围之内,换句话说,在Kc较大时,偏差e(t)仅在一定的范围内与控制器的输出保持线性关系。图4-1说明了偏差与输出之间保持线性关系的范围。图中偏差在-50%-50%范围变化时,如 果Kc=1,则控制器输出 u(t)变化在0~100%范围 (对应阀门的全关到全 开),并与输入e(t)之间 保持线性关系。当Kc>1 时,制器输出u(t)与输入 e(t)之间的线性关系只在 -50%/Kc~50%/Kc满足。
当|e(t)|超出该范围时,控制器输出具有饱和特性,保持在最小或最大值。因此,比例控制有一定的应用范围,超过该范围时,控制器输出与输入之间不成比例关系。这表明,从局部范围看,比例控制作用表示控制输出与输入之间是线性关系,但从整体范围看,两者之间是非线性关系。
2.比例带及其物理意义
① 比例带的定义
在过程控制中,通常用比例度表示控制输出与偏差成线性关系的比例控制器输入(偏差)的范围。因此,比例度又称为比例带,其定义为
如果采用的是单元组合仪表,控制器的输入和输出都是统一的标准信号,此时
这表明,比例带δ与控制器比例增益Kc的倒数成正比。当采用无量纲形式(如采用单元组合仪表)时,比例带δ就等于控制器比例增益Kc的倒数。比例带δ小,意味着较小的偏差就能激励控制器产生100%的开度变化,相应的比例增益Kc就大。
② 比例带的物理意义
从式(4-3)可以看出,如果u直接代表控制阀开度的变化量,那么δ就代表使控制阀开度改变100%即从全关到全开时所需要的被控变量的变化范围。只有当被控变量处在这个范围以内,控制阀的开度(变化)才与偏差成比例。超出这个“比例带”以外,控制阀已处于全关或全开的状态,此时控制器的输入与输出已不再保持比例关系,而控制器至少也暂时失去其控制作用了。
实际上,控制器的比例带δ习惯用它相对于被控变量测量仪表的量程的百分数表示。例如,若测量仪表的量程为100℃,则δ=50就表示被控变量需要改变50℃才能使控制阀从全关到全开。
4.2.2 比例控制的特点
比例调节的显著特点就是有差调节。
如果采用比例调节,则在负荷扰动下的调节过程结束后,被调量不可能与设定值准确相等,它们之间一定有残差。
因为根据比例调节的特点,只有调节器的输入有变化,即被调量和设定值之间有偏差,调节器的输出才会发生变化。
图4-2是一个热水加热器的出口水温控制系统。在这个控制系统中,热水温度θ是由温度测量变送器TT获取信号并送到温度控制器TC的,控制器控制加热蒸汽的调节阀开度μ以保持出口水温恒定,加热器的热负荷既决定于热水流量Q也决定于热水温度θ的值。假定现在采用比例控制器,并将调节阀开度μ直接视为控制器的输出。
图4-3中的直线 l是比例控制器的静特性,即调节阀开度随水温变化的情况。水温愈高,控制器应把调节阀开得愈小,因此它在图中是左高右低的直线,比例带愈大,则直线的斜率愈大。 图中曲线2和3分别代表加热器在不同的热水流量下的静特性。它们表示加热器在没有控制器控制时,在不同的热水流量下的稳态出口水温与调节阀开度之间的关系,可以通过单独对加热器进行的一系列实验得到。
直线 l与曲线2的交点O代表在热水流量为 Q0,业已投入自动控制并假定控制系统是稳定的情况下,最终要达到的稳态运行点,那时的出口水温为θ0,调节阀开度为μ0。
如果假定θ0就是水温的设定值(这可以通过调整控制器的工作点做到),从这个运行点开始,如果热水流量减小为 Ql,那么在控制过程结束后,新的稳态运行点将移到直线 l与曲线3的交点A。这就出现了被控变量残差θA-θ0,它是比例控制规律所决定的。不难看出,残差既随着流量变化幅度也随着比例带的加大而加大。
比例控制虽然不能准确保持被控变量恒定,但效果还是比不加自动控制好。在图4-3中可见,从运行点O开始,如果不进行自动控制,那么热水流量减小为 Ql后,水温将根据其自平衡特性一直上升到θB为止。
下面通过一个例子来从理论上对以上的结论进行验证。
例4-1 已知系统方框图如图4-4所示,试分析系统在阶跃给定信号作用下的稳态特性。
其中,控制器Gc(s)和广义被控对象Gp(s)的传递函数分别为
解 当系统在幅值为A的阶跃给定信号r(t)=A1(t)作用时,其稳态误差为
由此可见,该系统采用比例控制时,在给定信号作用下的稳态误差与输入的幅值成正比,与其开环增益KcK成反比,它为一有限值。也就是说,只要广义被控对象的增益K与控制器的增益Kc乘积不为无穷大,系统的稳态误差就不会为零。
加热器是具有自衡特性的工业过程,另有一类过程则不具有自衡特性,工业锅炉的水位控制就是一个典型例子。这种非自衡过程本身没有所谓的静特性,但仍可以根据流入、流出量的平衡关系进行有无残差的分析。为了保持水位稳定,给水量必须与蒸汽负荷取得平衡。一旦失去平衡关系,水位就会一直变化下去。因此当蒸汽负荷改变后,在新的稳态下,给水调节阀开度必须有相应的改变,才能保持水位稳定。如果采用比例控制器,当蒸汽负荷改变后,这就意味着水位必须有残差。但水位设定值的改变不会影响锅炉的蒸汽负荷,因此在水位设定值改变后,水位不会有残差。
例4-2 已知系统方框图如图4-4所示,试分析系统在阶跃信号作用下的稳态特性。其中,控制器Gc(s)和广义被控对象Gp(s)的传递函数分别为
解 (1) 当系统在幅值为A的阶跃给定信号r(t)=A1(t)作用时,其稳态误差为
(2) 当系统在幅值为A的阶跃扰动信号d(t)=A1(t)作用,且时,其稳态误差为
由此可见,无自衡特性的对象采用比例控制时,系统在阶跃给定信号作用下的稳态误差为零,但在阶跃扰动信号作用下的稳态误差可能不会为零。
4.2.3 比例带对控制过程的影响
误差
残差随着比例带的加大而加大。
稳定性
稳定性随着比例带的加大而提高。
减小比例带就等于加大调节系统的开环增益,其后果是导致系统激烈振荡甚至不稳定。(见图4-4)
例4-3 针对例4-1所给系统,试分析系统的动态特性和稳定性。 解 (1) 根轨迹分析法 系统的开环传递函数为:
根据绘制根轨迹的规则,可得该系统的根轨迹形状如图4-6所示。 系统有无穷多个闭环极点,其中l=0的根轨迹称为主根轨迹;l=l,2,…的根轨迹称为辅助根轨迹。系统的动态响应主要由主根轨迹上的两个主导极点来决定。
随着Kc的增大,系统的主导极点由实数变为复数,当Kc继续增加时,系统的主根轨迹首先进入根平面右半部分。这样的根轨迹分布表明,随着Kc的增加,系统的动态过程由不振荡变为振荡,最后变为发散震荡。系统的稳定性随着Kc的增大不断下降,直至变为不稳定系统。
若该系统的广义被控对象不含纯延迟时,系统的开环传递函数为
其根轨迹如图4-7所示,此时不论Kc为何值,系统始终是稳定的,而且动态过程是单调变化的。而当广义被控对象有纯延迟环节e-s时,系统稳定性变差,变成只有当Kc小于某一值时,系统才稳定。
(2) 频域分析法
系统的开环频率特性为:
该系统的Nyquist图(=0+)如图4-8中实线所示。由图可以看出,系统的稳定性随着Kc的增大不断下降,直至当Kc大于某一值时,系统的Nyquist曲线(从-0+)包围(-1,j0)点,变为不稳定系统。 若广义被控对象不含 纯延迟(=0)时,该系统 的Nyquist图如图4-8中 虚线所示。此时不论Kc 为何值,系统始终是 稳定的。
例 已知系统方框图如图所示。
其中,控制器Gc(s)和被控对象Gp(s)的传递函数分别为
试利用MATLAB绘制控制器的比例系数分别为Kc=0.3, 1, 2, 5, 12.6时系统的单位阶跃响应。
由此可见,在采用比例控制时,例4-1所示系统随着比例系数Kc值的增大,响应速度加快,超调量也随着增大,调节时间也加长,稳态误差(系统的稳态输出值为1)变小,但稳态误差不会为零。其系统过渡过程具体表现为,当0<Kc<0.15时为单调衰减变化;当0.15Kc<12.6时为振荡衰减变化;当Kc大到一定值(Kc=12.6)后,系统会出现发散的振荡过程。
或利用以下MATLAB程序
%ex4_6_2.m
Gp=tf(1,conv([1,1], conv ([2,1],[5,1])));
Kc=1;Gk=Kc*Gp;
sisotool(Gk)
利用图4-20中Analysis菜单下的Response to Step Command或Other Loop Responses…命令,便可打开该系统在当前Kc值下的单位阶跃响应,如图4-21所示(Kc=2)。
改变“C(s)=”对话框中的值,等价于改变控制器比例系数Kc的值,同时图4-21中对应的单位阶跃响应也随之而变化。 。
4.3 比例积分控制(PI控制)
4.3.1 积分控制
1. 积分控制的调节规律
在 I调节中,调节器的输出信号的变化速度 du/dt与偏差信号e成正比,即
式中 KI为积分增益。
2. 积分控制的特点
积分控制的特点是无差控制,与比例控制的有差控制形成鲜明对比。积分调节可以做到稳态无差的原因在于积分作用输出与误差的累加相关,而不是与误差当前的大小相关。式(4-6)表明,只有当被控变量偏差e为零时,积分控制器的输出才会保持不变。然而与此同时,控制器的输出却可以停在任何数值上。这意昧着被控对象在负荷扰动下的控制过程结束后,被控变量没有残差,而调节阀则可以停在新的负荷所要求的开度上。采用积分控制的控制系统,其调节阀开度与当时被控变量的数值本身没有直接关系,因此,积分控制也称为浮动控制。
例4-4
已知系统方框图如图4-4所示,试分析系统在阶跃给定信号作用下的稳态特性。其中,控制器Gc(s)和广义被控对象Gp(s)的传递函数分别为
解 当系统在幅值为A的阶跃给定信号r(t)=A1(t)激励时,其稳态误差为
由此可知,该系统采用积分控制时,在阶跃给定信号作用下的稳态误差始终为零。
积分控制的另一个特点是它的稳定作用比比例控制差。例如,根据奈氏稳定判据可知,对于非自衡的被控对象采用比例控制时,只要加大比例带总可以使系统稳定(除非被控对象含有一个以上的积分环节);如果采用积分控制则不可能得到稳定的系统。
例4-5
已知系统方框图如图4-4所示,试利用频域分析法分析系统的稳定性。其中,控制器Gc(s)和广义被控对象Gp(s)的传递函数分别为
解 系统的开环频率特性为:
该系统的Nyquist图(=0+)如图4-9所示。由图可以看出,当从-0+变化时,系统的Nyquist曲线包围(-1,j0)点,即系统总是不稳定的。
4.3.2 PI控制
积分控制虽然可以做到消除稳态误差,但由于积分控制的输出同误差的累计相关,误差产生的初期,误差数值较小,调节作用弱,调节相对滞后,所以积分控制一般不单独使用,通常与比例控制联合使用,构成比例积分控制。
图4-6是PI控制器的阶跃响应,它是由比例动作和积分动作两部分组成的。在施加阶跃输入的瞬间,控制器立即输出一个幅值为Δe/δ的阶跃,然后以固定速度Δe/δTi变化。当t=Ti时,控制器的总输出为2Δe/δ。这样,就可以根据图4-6确定δ和Ti的数值。还可以注意到,当t=Ti时,输出的积分部分正好等于比例部分。由此可见,Ti可以衡量积分部分在总输出中所占的比重:Ti愈小,积分部分所占的比重愈大。
实际上,工业中常用的模拟PID控制器,由于放大器增益为有限值,故积分输出的幅度是有限的。因此,严格地讲,在系统中使用比例积分控制器后,只能大大减小而不能完全消灭静差。为此使用积分系数衡量引入控制作用后,静差减小的倍数,此时PD控制器的传递函数可表示为
式中,Kc称为比例增益;δ为比例带,可视情况取正值或负值;Ti为积分时间;Ki’称为积分系数。
显然,积分系数Ki’越大,控制静差越小。在国产DDZ-II型PID控制器中,规定Ki’必须大于180。在DDZ-III型PID控制器中,由于采用集成运算放大器,Ki’很容易做到104105,故使用这种控制器时,静差可忽略不计。
2. PI控制的特点
PI调节就是综合 P、I两种调节的优点,利用 P调节快速抵消干扰的影响,同时利用 I调节消除残差。
应当指出,PI调节引入积分动作带来消除系统残差之好处的同时,却降低了原有系统的稳定性。为保持控制系统原来的衰减率,PI调节器比例带必须适当加大。所以 PI调节是在稍微牺牲控制系统的动态品质以换取较好的稳态性能。
比例积分控制(PI控制)中,在比例带不变的情况下,减小积分时间Ti,将使控制系统稳定性降低、振荡加剧、控制过程加快、振荡频率升高,直到最后出现发散的振荡过程。图4-7为PI控制系统在不同积分时间的响应过程。
4.4 比例积分微分控制(PID控制)
4.4.1 微分控制的调节规律
在 D调节中,调节器的输出信号u与偏差信号的变化速度 d e /dt成正比,即
、
4.4.2 比例微分控制的调节规律
根据 PD控制器的斜坡响应也可以单独测定它的微分时间Td,如图4-11所示,如果Td =0即没有微分动作,那么输出u将按虚线变化。可见,微分动作的引入使输出的变化提前一段时间发生,而这段 时间就等于Td。 因此也可以说PD控制器有超前 作用,其超前时间 即是微分时间Td。
PD调节器有导前作用,其导前时间即是微分时间TD
最后可以指出,虽然工业 PD调节器的传递函数严格说应该是(4-14)式,但由于微分增益KD数值较大,该式分母中的时间常数实际上很小。因此为简单计,在分析控制系统的性能时,通常都忽略较小的时间常数,直接取(4-13)式为 PD调节器的传递函数。
4.4.3 比例微分控制的特点
PD调节也是有差调节,与 P调节相同。因在稳态下,de/dt=0,PD调节器的微分部分输出为零。
提高控制系统稳定性的作用。因微分调节动作总是力图抑制被调量的振荡。适度引入微分动作可以允许稍许减小比例带,同时保持衰减率不变。
图4-12表示同一被控对象分别采用 P控制器和 PD控制器并整定到相同的衰减率时,两者阶跃响应的比较。从图中可以看到,适度引入微分动作后,由于可以采用较小的比例带,结果不但减小了残差,而且也减小了短期最大偏差和提高了振荡频率。
应当特别指出,引入微分动作要适度。这是因为在大多数 PD控制系统随着微分时间Td增大,其稳定性提高,但某些特殊系统也有例外,当Td超出某一上限值后,系统反而变得不稳定了。图4-13表示控制系统在不同微分时间的响应过程。
微分调节动作的缺点:
微分动作太强容易导致调节阀开度向两端饱和,因此在 PD调节中总是以比例动作为主,微分动作只能起辅助调节作用。 PD调节器的抗干扰能力很差,这只能应用于被调量的变化非常平稳的过程,一般不用于流量和液位控制系统。 微分调节动作对于纯迟延过程显然是无效的。
4.4.4 比例积分微分控制的调节规律
比例积分微分控制规律
PID调节器的传递函数为
不难看出,由式(4-17)表示的调节器动作规律在物理上是不能实现的。 工业上实际采用的PID调节器如 DDZ型调节器,在忽略比例积分微分相互干扰的情况下,其传递函数可表示为
式中 Kd’为微积分系数;其余参数同前。
图4-17给出工业 PID调节器的响应曲线,其中阴影部分面积代表微分作用的强弱。
图4-18 各种控制规律的响应过程 1-比例控制;2-积分控制;3-PI控制;4-PD控制;5-PID控制
显然,PID三作用时控制效果最佳,但这并不意味着,在任何情况下采用三作用调节都是合理的。
解 (1) 利用Simulink建立的PID控制系统方框图如图4-24所示。
2) 在MATLAB窗口执行以下命令,即 >>Kc=5;Ti=15;Td=1;
(3) 将仿真时间设为25后运行系统,便可在示波器中看到如图4-25所示的单位阶跃响应。
或将PID Controller模块的三个参数分别设置为Kc、Ki和Kd;再在MATLAB窗口执行以下命令;并将仿真时间设置为25后,运行系统,便可同样在示波器中看到如图4-25所示的单位阶跃响应曲线 >>Kc=5;Ki=5/15;Kd=51;
4.5 数字PID控制
早期的PID控制器(也称PID调节器)是由气动部件、液动部件或晶体管、运算放大器等电子元件组成的模拟PID控制器,它的PID运算是靠硬件实现的 。近年来,随着计算机技术的飞速发展,由计算机实现的数字PID控制器正在逐渐取代由模拟仪表构成的模拟PID控制器。
在数字PID控制器中,它的PID运算是靠软件实现的,一般采用基本的数字PID控制算法。另外,在过程控制系统的实际应用中,还有多种形式的改进数字PID控制算法,以便提高实际PID控制的性能。
4.5.1 基本的数字PID控制算法
由于数字控制器只能处理数字信号,所以要用数字控制器实现PID控制,必须要将PID控制算法离散化,即设计数字PID控制算法。
为将式(4-16)所示的模拟PID控制算法离散化,首先将连续时间t离散化为一系列采样时刻点kT(k为采样序号,T为采样周期),然后以求和取代积分,再用差分取代微分,于是得离散化的PID控制算法为
式(4-19)就是基本的数字PID控制算法。
由于数字控制器输出是直接控制执行机构(如调节阀)动作的,的值与执行机构的位置(如阀门开度)一一对应,所以通常称式(4-19)为位置式PID控制算法。
在位置式PID控制算法中,由于数字控制器输出直接对应执行机构的实际位置,所以一旦控制器出现故障,将使得大幅度变化,必会引起执行机构的大幅变化,而这在生产过程中是不允许的,在某些场合甚至会造成重大的生产事故。
另外,有些执行机构(如步进电动机)要求控制器的输出为增量形式,在这些情况下位置式PID控制就不能使用,为此对位置式PID控制算法进行了变换,引入增量式PID控制。
所谓增量就是两个相邻时刻控制输出的绝对量之差。根据式(4-19)不难得到(k-1)T时刻的输出表达式为
根据式(4-19)和式(4-20)可得PID控制算法的增量式
为了编程方便,可将式(4-21)整理成如下形式
与模拟PID控制器相比,数字PID控制器的参数多了一个采样周期T。理论上讲,采样周期T越小,数字控制器的控制性能越接近模拟控制器的控制性能,但T太小会加重控制器的计算负担。另外,采样周期T也不能太大,否则系统将会变成为不稳定系统。所以在数字PID控制器中,采样周期T在满足采样定理的前提下,要综合考虑。数字PID控制器中,参数Kc、Ti和Td的选取同前。
本章小结
比例控制的特点是有差控制。积分控制的特点是无差控制,但它的稳定作用比P控制差。具有积分作用的控制器,可能产生积分饱和现象。微分控制动作总是力图抑制被控变量的振荡,它有提高控制系统稳定性的作用。
PID控制是比例积分微分控制的简称。理想的PID控制器动作规律在物理上是不能实现的。但在计算机技术基础上,已不存在物理上不能实现的问题。 在数字PID控制器中,PID运算是靠软件实现的,一般采用基本数字PID控制算法或改进数字PID控制算法.
关注作者了解更多
我的其他CSDN专栏
关注作者了解更多
资料来源于网络,如有侵权请联系编者