写在前面
我之前说过,没有做过电商系统的程序员的技术生涯是不完整的,因为电商有着非常多的领域概念,如果可以很好消化这些概念,对于后续业务建模是非常有帮助的。而且电商与交易相关,涉及着资金流、信息流的处理,所以高并发场景下的数据一致性处理也具有非常大的挑战。
线上电商与线下门店有何不同
电商本质上属于零售中的一种,而阿里提出了“新零售”,京东提出了“无界零售”,所以做电商相关技术的同学,如果不了解点零售相关的概念,总感觉说不过去,今天我们就简单聊聊新零售的概念和对应的技术。
新零售本身是对老零售的一个升级。
老零售一般指的是线下的传统品牌的门店,这些门店没有完成数字化升级。
线上电商更多的考虑的是转化、效率,目的是上消费者快速的选到想要的东西,提高转化。而线下门店强调的是店内的体验,这涉及到体感与服务,同时线下门店具有非常强的LBS属性,新零售中经常提到的一个概念是“仓店一体”,门店可以被看做具有一种履约的能力。
线下门店数字化挑战
线下零售门店有非常多的挑战,比如投入租金及人力成本比较大,而且线下客流越来越少,门店的会员不能很好的运营起来,会员与门店的联系会越来越弱。
基于此,智慧门店可以围绕于C端体验优化、B端效率提升展开,在“人、货、场”三要素上,做到可识别、可分析、可触达、泛内容化等帮助品牌数字化升级。
我们可以将线下门店的实体与数据信息,比如交易、商品、营销、会员等进行数字化,这些数据只有经过计算才有价值。
对于消费者可以采用远场营销与近场营销的形式,线上的云店可以作为线下门店的内容载体,线下门店主要负责服务于体验。
线上云店的数据经过沉淀与平台计算,可以进一步赋能给品牌,品牌基于这些交易对消费者进行二次运营,还可以做到媒体的精准投放与营销。
传统电商渠道里,基于流量的运营,本质上是在运营消费者点击和其数字化动线,通过很多手段让他转化到最高的承接页。线下门店同样希望影响消费者的消费动线。
远场营销关注的是能不能在线上完成交易,同时通过营销手段将消费者引流到店内完成现场交易。
近场营销关注的是怎么大概率的让消费者进入到智慧门店。
通过兑换券方式帮助商家引流到店,兑换券的核销成本非常低,只需要扫码即可完成核销。
阿里可以基于高德导航告诉消费者去到这个门店的路线,一旦消费者进店就有可能产生二次消费。
既然是服务于线下门店的兑换券,那么这个券包设计就非常重要,券可以看做是权益的集合体,且具有非常强的LBS属性。
比如商圈券包,到达一个商圈后,可以收到一个专属券包,涵盖了这个商圈中智慧门店的权益,可以实现引发消费者改变消费动线的效果。在远场,可以领到一个线下门店的券包,结合高德导航,去近场消费。
还有一种券包权益,可以看做是行业券包,就是由非常多线下行业的权益联盟组成,比如家装行业,通过算法组合成电子券包,涵盖装修、马桶、地板等组合方案,当消费者有类似需求时,可以引导消费者去这些门店。
什么是云店
云店是实体门店在线上的一个商业载体,包括了商品、权益、优惠、图文信息的数字化形式。
通过数字化形式让这个门店售卖不仅限于店内库存的东西,这样就打破了线下门店的物理限制。同时解决了线下门店与消费者的断连问题,消费者可以通过线上不断触达这个门店,以推送等形式不断建立联系,影响消费者。同时可以做到线上的活动传播,且内容丰富,图文、视频等形式。
一个数字化的新零售全景图
新零售技术实现
聊了这么多新零售的概念,技术如何实现呢?
其实技术实现与传统电商差异不大,涉及到的概念主要还是传统电商的一些东西,比如下面这些。
SPU
Standard Product Unit 即标准产品单位,SPU描述一个产品的各种特性。
什么时候需要使用SPU呢?
当我们在电商平台搜索ipad的时候,平台先去产品表搜id,再去商品表关联数据。产品表SPU的数量远远小于商品表的数量。
SKU
Stock Keeping Unit 即库存进出计量单位,SKU是物理上不可分割的最小库存单位。
品类与SKU关联起来
是1对多的数据结构:
商品采购入库过程
表结构设计
品类表
参数表
品牌表
商品分类表
分类与品牌关联中间表
产品表
商品表
零售店与库存、商品之间的对应关系
仓库与商品中间表
零售店与商品中间表
会员等级表
客户表
客户收货表
优惠券表与客户优惠券关系表
订单表
订单详情表
快递表
退货表
商品评价表
供应商数据表、供应商商品管理表
采购表、入库表、采购入库关联表
订单号、流水号生成设计
商品信息修改历史
智能拆单
解决就近返货问题。
由于是自建仓库,如果本地仓库没货/顾客城市没仓库,那就需要从外地仓库发货,需要计算哪个仓库距离客户距离最短
通过高德地图API获取客户地理位置信息,利用MySql计算两个坐标点之间的距离。
st_distance函数可以计算两个坐标之间的相差度数:
进而查询出与收货坐标点最近的仓库信息:
判断仓库是否有库存: