凸优化基础简述

本文简要介绍了凸优化的基础概念,包括欧式空间的度量、方向、多元函数的导数与二阶导数、以及凸集和凸函数的定义。通过讨论内积、范数、方向导数和Taylor展开式,为理解凸优化的理论打下基础。此外,还阐述了凸集的性质,如交集、乘积和差集的凸性,以及凸函数的特性。
摘要由CSDN通过智能技术生成

欧式空间

度量

Euclid空间,就是在线性空间上定义一个度量,即内积与范数。
内积
对于 n n 维欧式空间,向量 x y y 的内积定义为:

x , y = i = 1 n x i y i = x T y
内积具有如下性质:

  1. x,x0 ⟨ x , x ⟩ ≥ 0 , 且 x,x=0x=0 ⟨ x , x ⟩ = 0 ⟺ x = 0 ;
  2. x,y=y,x ⟨ x , y ⟩ = ⟨ y , x ⟩
  3. λx+μy,z=λx,z+μy,z ⟨ λ x + μ y , z ⟩ = λ ⟨ x , z ⟩ + μ ⟨ y , z ⟩

范数
n n 维欧式空间上的范数定义为:

x = ( i = 1 n x i 2 ) 1 2 = ( x , x ) 1 2

范数具有如下性质:

  1. x0 ‖ x ‖ ≥ 0 x=0x=0 ‖ x ‖ = 0 ⟺ x = 0
  2. λx=|λ|x ‖ λ x ‖ = | λ | ‖ x ‖
  3. 三角不等式: x+yx+y ‖ x + y ‖ ≤ ‖ x ‖ + ‖ y ‖ , 以及Cauchy-Schwarz不等式: |x,y|xy | ⟨ x , y ⟩ | ≤ ‖ x ‖ ‖ y ‖ ,且等号成立的充要条件是 x x y 共线( x=λy x = λ y )。

一般来说,满足以上性质的表达式均可被称为内积或范数,此处我们仅运用以上两种情况。

方向

正交方向
Rn R n k(kn) k ( k ≤ n ) 个向量 q1,q2,,qk q 1 , q 2 , … , q k 两两正交,即

qi,qj=0,ij,1i,jk ⟨ q i , q j ⟩ = 0 , i ≠ j , 1 ≤ i , j ≤ k
则称它们为 k k 个正交方向;若又满足:
q i 0 , i = 1 , 2 , , k
则称为 k k 个非零正交方向。

共轭方向
G n×n n × n 正定矩阵。若 d1,d2 d 1 , d 2 满足

(d1)TGd2=0 ( d 1 ) T G d 2 = 0
则称 d1,d2 d 1 , d 2 关于 G G 共轭。若 d 1 , d 2 , , d k ( k n ) 两两关于
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值