欧式空间
度量
Euclid空间,就是在线性空间上定义一个度量,即内积与范数。
内积:
对于 n n 维欧式空间,向量
和 y y 的内积定义为:
- ⟨x,x⟩≥0 ⟨ x , x ⟩ ≥ 0 , 且 ⟨x,x⟩=0⟺x=0 ⟨ x , x ⟩ = 0 ⟺ x = 0 ;
- ⟨x,y⟩=⟨y,x⟩ ⟨ x , y ⟩ = ⟨ y , x ⟩ ;
- ⟨λx+μy,z⟩=λ⟨x,z⟩+μ⟨y,z⟩ ⟨ λ x + μ y , z ⟩ = λ ⟨ x , z ⟩ + μ ⟨ y , z ⟩ 。
范数:
n n 维欧式空间上的范数定义为:
范数具有如下性质:
- ∥x∥≥0 ‖ x ‖ ≥ 0 且 ∥x∥=0⟺x=0 ‖ x ‖ = 0 ⟺ x = 0 ;
- ∥λx∥=|λ|∥x∥ ‖ λ x ‖ = | λ | ‖ x ‖ ;
- 三角不等式: ∥x+y∥≤∥x∥+∥y∥ ‖ x + y ‖ ≤ ‖ x ‖ + ‖ y ‖ , 以及Cauchy-Schwarz不等式: |⟨x,y⟩|≤∥x∥∥y∥ | ⟨ x , y ⟩ | ≤ ‖ x ‖ ‖ y ‖ ,且等号成立的充要条件是 x x , 共线( x=λy x = λ y )。
一般来说,满足以上性质的表达式均可被称为内积或范数,此处我们仅运用以上两种情况。
方向
正交方向:
若 Rn R n 中 k(k≤n) k ( k ≤ n ) 个向量 q1,q2,…,qk q 1 , q 2 , … , q k 两两正交,即
⟨qi,qj⟩=0,i≠j,1≤i,j≤k ⟨ q i , q j ⟩ = 0 , i ≠ j , 1 ≤ i , j ≤ k
则称它们为
k k
个正交方向;若又满足:
共轭方向:
设
是 n×n n × n 正定矩阵。若 d1,d2 d 1 , d 2 满足
(d1)TGd2=0 ( d 1 ) T G d 2 = 0
则称
d1,d2 d 1 , d 2
关于
G G
共轭。若
两两关于