GRNet: Learning Multi-view Camera Relocalization with Graph Neural Networks
驭势科技, 北京大学机器感知重点实验室, 北京长城航空测控技术研究所
-
本文提出了一种使用多视角图像进行相机重定位的图神经网络。
-
该网络可以使得不连续帧之间进行信息传递,相比于只能在相邻前后帧之间进行信息传递的 序列输入和LTSM,其能捕获更多视角信息以进行重定位。因此LSTM只是一种GNN的特殊情况。
-
为了让GNN能适应于重定位任务,作者重新设计了节点、边、嵌入函数,使用CNN和GNN分别用于特征提取和知识传播。
-
设计了一个通用的基于图的损失函数,超越了原来的连续视角约束,引入了多视角约束
为什么使用GNN呢? 因为GNN可以处理非结构性输入。LSTM和视觉里程计可以提供前后相邻帧的时间一致性约束,且LSTM并不能保持长时间的记忆。而GNN可以提供不连续多视角帧之间的时间一致约束。
整体框架:
论文方法
1.重新设计GNN
-
节点:是一个3维的张量,每个节点 v i v_i vi的特征 x i ∈ R H × W × C x_i \in R^{H×W×C} xi∈RH×W×C
-
边初始化:初始化的时候连接所有的节点对,不放过任何可能的两个节点之间连接,后期会有边池化操作简化计算量
这一步相比于LSTM的相邻节点相连具有优越性。
2.信息传播
-
首先使用CNN生成要从xi传播到xj的消息:
m j → i = f m ( x i , x j ) m_{j→i}=f_m(x_i,x_j) mj→i=fm(xi,xj)
这里的fm是两层CNN,将xi和xj连接后输入fm得到传播消息 -
进行消息选择,其实就是计算边权重对边加权:
a j → i = f a t t e n ( x i , x j ) 其 中 f a t t e n 是 逐 通 道 计 算 的 余 弦 相 似 度 c s : a j → i ( k ) = σ ( c s ( v e c ( x i ( k ) ) , v e c ( x j ( k ) ) ) ) σ 为 归 一 化 到 01 a_{j→i}=f_{atten}(x_i,x_j)\\其中f_{atten}是逐通道计算的余弦相似度cs:\\a^{(k)}_{j→i}=σ(cs(vec(x^{(k)}_i),vec(x^{(k)}_j)))\\\sigma 为归一化到01 aj→i=fatten(xi,xj)其中fatten是逐通道计算的余弦相似度cs:aj→i(k)=σ(cs(vec(xi(k)),vec(xj(k))))σ为归一化到01 -
信息融合:即连接到x_i的所有边的加权平均:
m i a g g = 1 N i ∑ e i j ∈ ϵ a j → i ⊗ m j → i ⊗ 表 示 逐 通 道 相 乘 m^{agg}_i=\frac1{N_i}\sum_{e_{ij}\in \epsilon}a_{j→i}⊗m_{j→i}\\ ⊗表示逐通道相乘 miagg=Ni1eij∈ϵ∑aj→i⊗mj→i⊗表示逐通道相乘 -
计算好融合的信息后,就是将节点v_i的特征x_i更新为其值了
x i ′ = f u ( x i , m i a g g ) 其 中 f u 为 更 新 函 数 , 实 际 上 是 C N N 和 f m 相 同 但 是 参 数 不 共 享 x'_i=f_u(x_i,m^{agg}_i)\\其中f_u为更新函数,实际上是CNN和f_m相同但是参数不共享 xi′=fu(xi,miagg)其中fu为更新函数,实际上是CNN和fm相同但是参数不共享
3.多层动态更新
多层更新引入了边池化机制,去除冗余连接。
-
多层图神经网络:
使用ResNet34的四个模块 f c l ( l = 1 , 2 , 3 , 4 ) f_c^l \ (l=1,2,3,4) fcl (l=1,2,3,4)对节点进行更新:
V l = f c l ( V l − 1 ) V^l=f^l_c(V^{l−1}) Vl=fcl(Vl−1)
使用图神经网络 f g l f_g^l fgl对边进行更新:
KaTeX parse error: Undefined control sequence: \ at position 14: V^l_{fused},\̲ ̲epsilon ^l=f^l_… -
自适应边池化:
只保留余弦相似度最高的前k个节点之间的连接:
c j → i = c s ( m a x p o o l ( x i ) , m a x p o o l ( x j ) ) c_{j→i}=cs(maxpool(x_i), maxpool(x_j)) cj→i=cs(maxpool(xi),maxpool(xj)) -
位姿估计:
使用全局平均池化(GAP)对每层GNN的输出进行池化(融合各层特征输出),然后逐通道连接,通过两个全连接网络进行位置和姿态的估计。
4.GNN损失函数
模型的输出包含预测的位姿以及位姿之间的连接(边),因此损失函数包含两项
L
=
1
N
v
∑
v
i
∈
V
p
o
s
e
d
(
ζ
i
,
ζ
^
i
)
+
1
N
e
∑
e
i
j
∈
E
p
o
s
e
d
(
ω
i
j
,
ω
^
i
j
)
第
一
项
是
绝
对
位
姿
损
失
,
第
二
项
是
有
连
接
的
节
点
之
间
的
相
对
位
姿
损
失
。
d
(
ζ
i
,
ζ
^
i
)
=
∣
∣
t
i
−
t
^
i
∣
∣
1
∗
e
−
β
p
+
β
p
+
∣
∣
r
i
−
r
^
i
∣
∣
1
∗
e
−
γ
p
+
γ
p
L=\frac1{N_v}\sum_{v_i\in V_{pose}}d(ζ_i,\hat ζ_i)+\frac1{Ne}\sum_{e_{ij}\in E_{pose}}d(ω_{ij},\hat ω_{ij})\\第一项是绝对位姿损失,第二项是有连接的节点之间的相对位姿损失。\\d(ζ_i,\hat ζ_i)=||t_i−\hat t_i||_1*e^{−β_p}+β_p+||r_i−\hat r_i||_1*e^{−\gamma p}+\gamma p
L=Nv1vi∈Vpose∑d(ζi,ζ^i)+Ne1eij∈Epose∑d(ωij,ω^ij)第一项是绝对位姿损失,第二项是有连接的节点之间的相对位姿损失。d(ζi,ζ^i)=∣∣ti−t^i∣∣1∗e−βp+βp+∣∣ri−r^i∣∣1∗e−γp+γp
5.实验结果:
室内数据集:7scenes
室外数据集:cambridge,RobotCar