#基于Transformer(一维数据)的滚动轴承故障诊断实例代码torch(10分类)
前言
构建一个名为Transformer的混合神经网络模型,它结合了传统的Transformer架构和时间序列处理的TimeTransformer。模型首先通过一个自定义的模块对输入数据进行预处理,提取局部特征k和全局特征g。接着,使用TimeTransformer模块处理时间序列数据,该模块基于Transformer架构,具备多头自注意力机制,能够捕捉数据中的时空依赖性。最后,模型通过一个多层感知机(MLP)头将时间特征映射到类别标签,实现分类任务。整个模型结构体现了对时空特征的深度融合和利用,用于处理需要同时考虑时间序列和空间特征的任务。
本模型使用的一维轴承数据,数据集是CWRU数据集。
一、Transformer是什么?
Transformer是一种基于自注意力机制的深度学习模型,最初由Vaswani等人在2017年提出,用于处理序列数据,特别是在自然语言处理领域中的翻译任务。它摒弃了传统的循环神经网络结构,通过并行处理序列中的所有元素来提高训练效率和性能。在轴承故障诊断中,Transformer可以被用来分析轴承振动信号的时间序列数据,通过捕捉信号中的复杂模式和时序依赖关系,从而实现对轴承健康状态的准确评估和故障类型的识别。
二、TimeTransformer是什么?
TimeTransformer是一种深度学习模型,它基于Transformer架构,专门设计用于处理时间序列数据,如视频帧序列。与传统的Transformer不同,TimeTransformer能够直接从序列中学习时空特征,无需依赖于卷积操作。在轴承故障诊断领域,TimeTransformer可以应用于分析轴承的振动信号,通过捕捉信号中的时空依赖性来识别轴承的健康状况。具体来说,TimeTransformer通过将一维振动信号转换为二维时频图,然后输入到模型中进行特征提取,最后通过分类器进行故障类型判别。这种方法能够有效地从原始信号中提取出有用的特征,并识别出轴承的故障模式,展现出优越的诊断性能。
三、实验结果
评估参数:
迭代30次
训练和测试
29 train ACC:1.0000
29 validation ACC:1.0000
验证:
F1 Score: 1.0
FPR: 0.0
Recall: 1.0
Precision: 1.0
代码运行可生成如下结果图片
提示:完整代码见某鱼:WQTPZ1973
也可直接搜索即可