基于Transformer(一维数据)的滚动轴承故障诊断实例代码torch(10分类)

#基于Transformer(一维数据)的滚动轴承故障诊断实例代码torch(10分类)


前言

构建一个名为Transformer的混合神经网络模型,它结合了传统的Transformer架构和时间序列处理的TimeTransformer。模型首先通过一个自定义的模块对输入数据进行预处理,提取局部特征k和全局特征g。接着,使用TimeTransformer模块处理时间序列数据,该模块基于Transformer架构,具备多头自注意力机制,能够捕捉数据中的时空依赖性。最后,模型通过一个多层感知机(MLP)头将时间特征映射到类别标签,实现分类任务。整个模型结构体现了对时空特征的深度融合和利用,用于处理需要同时考虑时间序列和空间特征的任务。

本模型使用的一维轴承数据,数据集是CWRU数据集。

一、Transformer是什么?

Transformer是一种基于自注意力机制的深度学习模型,最初由Vaswani等人在2017年提出,用于处理序列数据,特别是在自然语言处理领域中的翻译任务。它摒弃了传统的循环神经网络结构,通过并行处理序列中的所有元素来提高训练效率和性能。在轴承故障诊断中,Transformer可以被用来分析轴承振动信号的时间序列数据,通过捕捉信号中的复杂模式和时序依赖关系,从而实现对轴承健康状态的准确评估和故障类型的识别。

二、TimeTransformer是什么?

TimeTransformer是一种深度学习模型,它基于Transformer架构,专门设计用于处理时间序列数据,如视频帧序列。与传统的Transformer不同,TimeTransformer能够直接从序列中学习时空特征,无需依赖于卷积操作。在轴承故障诊断领域,TimeTransformer可以应用于分析轴承的振动信号,通过捕捉信号中的时空依赖性来识别轴承的健康状况。具体来说,TimeTransformer通过将一维振动信号转换为二维时频图,然后输入到模型中进行特征提取,最后通过分类器进行故障类型判别。这种方法能够有效地从原始信号中提取出有用的特征,并识别出轴承的故障模式,展现出优越的诊断性能。

三、实验结果

评估参数:
迭代30次
训练和测试
29 train ACC:1.0000
29 validation ACC:1.0000
验证:
F1 Score: 1.0
FPR: 0.0
Recall: 1.0
Precision: 1.0

代码运行可生成如下结果图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

提示:完整代码见某鱼:WQTPZ1973
也可直接搜索即可

### 使用 Transformer 模型在 Python 中进行故障分类 #### 导入必要的库 为了构建和训练 Transformer 模型用于故障分类,首先需要导入一些基本的库。这些库包括 PyTorch 和其他辅助工具。 ```python import torch from torch import nn, optim import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from transformers import BertTokenizer, BertModel ``` #### 数据预处理 确保故障数据包括故障特征和对应的类别标签,适用于故障诊断分类预测任务[^1]。对于轴承故障诊断数据集,通常会包含时间序列形式的振动信号或其他传感器读数。这里假设已经有一个经过清洗并标注好类别的数据集 `data.csv`。 ```python # 加载数据 df = pd.read_csv('data.csv') # 特征与标签分离 X = df.drop(columns=['label']).values y = df['label'].values # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 标准化处理 scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) ``` #### 构建自定义 Transformer 类 由于标准的 BERT 或者其他预训练模型可能不完全适合特定的任务需求,因此可以根据实际应用场景调整架构设计一个新的变压器结构来适应故障检测的需求。 ```python class FaultDiagnosisTransformer(nn.Module): def __init__(self, input_dim, hidden_dim, num_classes): super(FaultDiagnosisTransformer, self).__init__() # 定义多头注意力机制层和其他组件... pass def forward(self, x): # 前向传播逻辑... return output ``` 注意,在此部分应具体实现上述提到的功能模块,如编码器堆叠、位置嵌入等细节[^3]。 #### 训练过程设置 完成模型搭建之后就可以着手准备训练流程了。这涉及到损失函数的选择、优化算法配置以及迭代更新参数的过程描述。 ```python device = 'cuda' if torch.cuda.is_available() else 'cpu' model = FaultDiagnosisTransformer(input_dim=X_train.shape[1], hidden_dim=768, num_classes=len(set(y))) model.to(device) criterion = nn.CrossEntropyLoss().to(device) optimizer = optim.Adam(model.parameters(), lr=1e-5) for epoch in range(num_epochs): model.train() outputs = model(torch.tensor(X_train_scaled).float().to(device)) loss = criterion(outputs, torch.tensor(y_train).long().to(device)) optimizer.zero_grad() loss.backward() optimizer.step() print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}") ``` #### 测试与评估 使用测试集数据对训练好的 Transformer 模型进行故障分类,并计算各项评价指标以衡量其表现效果[^2]。 ```python def evaluate_model(): model.eval() with torch.no_grad(): predictions = [] actuals = [] for i in range(len(X_test)): inputs = torch.tensor([X_test_scaled[i]]).float().to(device) target = torch.tensor([y_test[i]]).long().to(device) prediction = model(inputs) _, predicted_class = torch.max(prediction.data, 1) predictions.append(predicted_class.cpu().numpy()[0]) actuals.append(target.cpu().numpy()[0]) accuracy = sum(np.array(predictions) == np.array(actuals)) / len(actuals) print(f'Test Accuracy of the model on the test samples is :{accuracy * 100:.2f}%') evaluate_model() ``` 通过以上步骤即可实现在 Python 中利用 Transformer 进行故障分类的目标。当然还可以进一步探索更多高级特性,比如加入正则项防止过拟合等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pitepa

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值