Peterson算法是一个实现互斥锁的并发程序设计算法,可以控制两个进程访问一个共享的单用户资源而不发生访问冲突。Gary L. Peterson于1981年提出此算法[1] [2]。
算法概要[编辑]
算法使用两个控制变量flag与turn. 其中flag[n]的值为真,表示ID号为n的进程希望进入该临界区. 标量turn保存有权访问共享资源的进程的ID号.
//flag[] is boolean array; and turn is an integer flag[0] = false; flag[1] = false; turn; | |
P0: flag[0] = true; turn = 1; while (flag[1] == true && turn == 1) { // busy wait } // critical section flag[0] = false; // end of critical section |
P1: flag[1] = true; turn = 0; while (flag[0] == true && turn == 0) { // busy wait } // critical section flag[1] = false; // end of critical section |
该算法满足解决临界区问题的三个必须标准:互斥访问, 进入, 有限等待.[3]
互斥访问[编辑]
P0与P1显然不会同时在临界区: 如果进程P0在临界区内,那么或者flag[1]为假(意味着P1已经离开了它的临界区),或者turn为0(意味着P1只能在临界区外面等待,不能进入临界区).
进入[编辑]
进入(Progress)定义为:如果没有进程处于临界区内且有进程希望进入临界区, 则只有那些不处于剩余区(remainder section)的进程可以参与到哪个进程获得进入临界区这个决定中,且这个决定不能无限推迟。剩余区是指进程已经访问了临界区,并已经执行完成退出临界区的代码,即该进程当前的状态与临界区关系不大。
有限等待[编辑]
有限等待(Bounded waiting)意味着一个进程在提出进入临界区请求后,只需要等待临界区被使用有上限的次数后,该进程就可以进入临界区。[3]即进程不论其优先级多低,不应该饿死(starvation)在该临界区入口处。Peterson算法显然让进程等待不超过1次的临界区使用,即可获得权限进入临界区。
注解[编辑]
Peterson算法不需要原子(atomic)操作,即它是纯软件途径解决了互斥锁的实现。但需要注意限制CPU对内存的访问顺序的优化改变。
参考文献[编辑]
- ^ G. L. Peterson: "Myths About the Mutual Exclusion Problem", Information Processing Letters 12(3) 1981, 115–116
- ^ As discussed in Operating Systems Review, January 1990 ("Proof of a Mutual Exclusion Algorithm", M Hofri).
- ^ 3.0 3.1 Silberschatz. Operating Systems Concepts: Seventh Edition. John Wiley and Sons, 2005., Pages 194